Citation: WANG Rui-yu, BAI Si-yu, ZHENG Chuan-yue, LI Zhong. Effect of oxidative/reductive pretreatment on the performance of Cu2O/AC catalyst for oxidative carbonylation of methnol[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(10): 1245-1251. shu

Effect of oxidative/reductive pretreatment on the performance of Cu2O/AC catalyst for oxidative carbonylation of methnol

  • Corresponding author: LI Zhong, 
  • Received Date: 24 March 2015
    Available Online: 9 June 2015

    Fund Project: 国家自然科学基金(21506249) (21506249)江苏省博士后基金(1401096c) (1401096c)中央高校基本科研业务费(中国矿业大学,2014QNA19)资助项目 (中国矿业大学,2014QNA19)

  • The Cu2O/AC catalyst prepared by pyrolysis of copper acetate supported on activatede carbon was pretreated under oxidative (O2/N2) or reductive (H2/N2 and CO/N2) atmospheres. The oxidation/reduction of Cu2O was completed through pretreatment at 350 ℃ for 4 h, the Cu2O in catalyst could be completely oxidized to CuO by oxidative atmosphere, or reduced to metallic copper by reductive atmosphere. The catalyst activities were evaluated in a continuous fixed-bed tubular micro reactor under atmospheric pressure at 140 ℃. The catalyst pretreated by CO/N2 had good Cu0 dispersion on its surface and exhibited the highest activity. The space-time yield and selectivity of DMC reached 261.9 mg/(g·h) and 74.7%, respectively. After 58 h reaction, the valence state of copper species and the catalytic activity of catalysts pretreated by reductive atmosphere were found to be close to that of the Cu2O/AC catalyst. Comparing the catalytic performance, the characterization of surface and bulk copper species before and after reaction, it was obvious that metallic copper exhibited a high initial activity, while Cu2O was stable in catalytic activity and valence state, and CuO was low in activity.
  • 加载中
    1. [1]

      [1] KELLER N, REBMANN G, KELLER V. Catalysts, mechanisms and industrial processes for the dimethyl carbonate synthesis[J]. J Mol Catal A: Chem, 2010, 317(1/2): 1-18.

    2. [2]

      [2] 宋一兵, 罗爱国, 杜玉海, 方奕文. 甲醇直接气相氧化羰基化合成碳酸二甲酯[J]. 化学进展, 2008, 20(2/3): 221-226. (SONG Yi-bin, LUO Ai-guo, DU Yu-hai, FANG Yi-wen. Synthesis of dimethyl carbonate by direct vapor-phase oxycarbonylation of methanol[J]. Prog Chem, 2008, 20(2/3): 221-226.)

    3. [3]

      [3] RICHTER M, FAIT M J G, ECKELT R, SCHNEIDER M, RADNIK J, HEIDEMANN D, FRICKE R. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. J Catal, 2007, 245(1): 11-24.

    4. [4]

      [4] RICHTER M, FAIT M J G, ECKELT R, SCHREIER E, SCHNEIDER M, POHL M-M, FRICKE R. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Appl Catal B: Environ, 2007, 73(3/4): 269-281.

    5. [5]

      [5] 张海涛, 王淑芳, 赵新强, 王延吉. 负载型CuO催化剂上甲醇气相氧化羰基化合成碳酸二甲酯反应研究[J]. 河北工业大学学报, 2004, 33(4): 36-40. (ZHANG Hai-tao,WANG Shu-fang,ZHAO Xin-qiang,WANG Yan-ji. Study of synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol over supported copper catalysts[J]. J Hebei Univ Techol, 2004, 33(4): 36-40.)

    6. [6]

      [6] 李忠, 文春梅, 王瑞玉, 郑华艳, 谢克昌. 醋酸铜热解制备无氯Cu2O/AC催化剂及其催化氧化羰基化[J]. 高等学校化学学报, 2009, 30(10): 2024-2031. (LI Zhong,WEN Chun-mei, WANG Rui-yu, ZHENG Hua-yan, XIE Ke-chang. Chloride-free Cu2O/AC catalyst prepared by pyrolysis of copper acetate and catalytic oxycarbonylation[J]. Chem J Chin Univ, 2009, 30(10): 2024-2031.)

    7. [7]

      [7] 李忠, 文春梅, 郑华艳, 谢克昌. 载体表面性质对Cu2O/AC催化剂结构和活性的影响[J]. 高等学校化学学报, 2010, 31(1): 145-152. (LI Zhong, WEN Chun-mei, ZHENG Hua-yan, XIE Ke-chang. Effects of the active carbon surface properties on the structure and catalytic activity of Cu2O/AC catalyst[J]. Chem J Chin Univ, 2010, 31(1): 145-152.)

    8. [8]

      [8] 章日光, 郑华艳, 王宝俊, 李忠. CO和CH3O在Cu2O (Ш)表面吸附特性及共吸附的理论研究[J]. 高等学校化学学报, 2010, 31(6): 1246-1251. (ZHANG Ri-guang, ZHENG Hua-yan, WANG Bao-jun, LI Zhong. Theoretical study on the properties of CO and CH3O adsorption on Cu2O(111) surface and co-adsorption[J]. Chem J Chin Univ, 2010, 31(6): 1246-1251.)

    9. [9]

      [9] YAN B, HUANG S Y, WANG S P, MA X B. Catalytic oxidative carbonylation over Cu2O nanoclusters supported on carbon materials: The role of the carbon support[J]. Chem Cat Chem, 2014, 6(9): 2671-2679.

    10. [10]

      [10] 王瑞玉, 李忠, 郑华艳, 谢克昌. 无氯Cu/AC催化剂的制备及其催化气相甲醇氧化羰基化反应性能[J]. 催化学报, 2010, 31(7): 851-856. (WANG Rui-yu, LI Zhong, ZHENG Hua-yan, XIE Ke-chang. Preparation of chlorine-free Cu/AC catalyst and its catalytic properties for vapor phase oxidative carbonylation of methanol[J]. Chin J Catal, 2010, 31(7): 851-856.)

    11. [11]

      [11] 任军, 郭长江, 杨雷雷, 李忠. 淀粉基炭负载纳米铜催化合成碳酸二甲酯[J]. 催化学报, 2013, 34(9): 1734-1744. (REN Jun, GUO Chang-jiang, YANG Lei-lei, LI Zhong. Synthesis of dimethyl carbonate over starch-based carbon-supported Cu nanoparticles catalysts[J]. Chin J Catal, 2013, 34(9): 1734-1744.)

    12. [12]

      [12] REN J, WANG W, WANG D l, ZUO Z J, LIN J Y, LI Z. A theoretical investigation on the mechanism of dimethyl carbonate formation on Cu/AC catalyst[J]. Appl Catal A: Gen, 2014, 472: 47-52.

    13. [13]

      [13] WANG L C, HE L, LIU Y M, CAO Y, HE H Y, FAN K N, ZHUANG J H. Effect of pretreatment atmosphere on CO oxidation over α-Mn2O3 supported gold catalysts[J]. J Catal, 2009, 264(2): 145-157.

    14. [14]

      [14] 邹汉波, 陈胜洲, 林维明. Cu1Zr1Ce9Oδ催化剂选择性氧化CO性能的研究[J]. 工业催化, 2008, 16(2): 23-27. (ZOU Han-bo, CHEN Sheng-zhou, LIN Wei-ming. Effect of reaction conditions on the performance of Cu1Zr1Ce9Oδ catalyst for selective oxidation of CO[J]. Ind Catal, 2008, 16(2): 23-27.)

    15. [15]

      [15] 张丽萍, 万海勤, 朱捷, 宋春燕, 刘斌, 李丹, 董林. CO预处理对CuO/γ-Al 2O3催化剂性能的影响[J]. 无机化学学报, 2007, 23(3): 427-431. (ZHANG Li-ping, WAN Hai-qin, ZHU Jie, SONG Chun-yan, LIU Bin, LI Dan, DONG Lin. Effect of CO pretreatment on properties of CuO/γ-Al 2O3 catalyst[J]. Chin J Inorg Chem, 2007, 23(3): 427-431.)

    16. [16]

      [16] WAN H Q, LI D, DAI Y, HU Y H, ZHANG Y H, LIU L J, ZHAO B, LIU B, SUN K Q, DONG L, CHEN Y. Effect of CO pretreatment on the performance of CuO/CeO2/γ-Al2O3 catalysts in CO+O2 reactions[J]. Appl Catal A: Gen, 2009, 360(1): 26-32.

    17. [17]

      [17] BUKUR D B, LANG X S, DING Y J. Pretreatment effect studies with a precipitated iron Fischer-Tropsch catalyst in a slurry reactor[J]. Appl Catal A: Gen, 1999, 186(1/2): 255-275.

    18. [18]

      [18] ZHANG Y C, TANG J Y, WANG G L, ZHANG M, HU X Y. Facile synthesis of submicron Cu2O and CuO crystallites from a solid metalorganic molecular precursor[J]. J Cryst Growth, 2006, 294(2): 278-282.

    19. [19]

      [19] HUANG L, PENG F, YU H, WANG H J. Preparation of cuprous oxides with different sizes and their behaviors of adsorption, visible-light driven photocatalysis and photocorrosion[J]. Solid State Sci, 2009, 11(1): 129-138.

    20. [20]

      [20] CHEN A P, LONG H, LI X C, LI Y H, YANG G, LU P X. Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition[J]. Vacuum, 2009, 83(6): 927-930.

    21. [21]

      [21] WANG L C, LIU Y M, CHEN M, CAO Y, HE H Y, WU G S, DAI W L, FAN K N. Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis[J]. J Catal, 2007, 246(1): 193-204.

    22. [22]

      [22] GVNTER M M, RESSLER T, JENTOFT R E, BEMS B.Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and adsorption spectroscopy[J]. J Catal, 2001, 203(1): 133-149.

    23. [23]

      [23] LUO M F, FANG P, HE M, XIE Y L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. J Mol Catal A: Chem, 2005, 239(1/2): 243-248.

    24. [24]

      [24] 李忠, 黄海彬, 谢克昌. Cu(I)/SO42-/ZnO和Cu(I)/S28O2-/ZnO催化剂的制备与表征[J]. 高等学校化学学报, 2008, 29(8): 1609-1615. (LI Zhong, HUANG Hai-bin, XIE Ke-chang. Preparation and characterization of Cu(I)/SO42-/ZnO and Cu(I)/S28O2-/ZnO catalysts[J]. Chem J Chin Univ, 2008, 29(8): 1609-1615.)

    25. [25]

      [25] LEE C Y, HA B H. Reduction behavior of copper oxide in copper/mordenites[J]. Stud Surf Sci Catal, 1994, 84: 1563-1570.

    26. [26]

      [26] WAN Y, MA J X, WANG Z, ZHOU W, KALIAGUINE S. Selective catalytic reduction of NO over Cu-Al-MCM-41[J]. J Catal, 2004, 227(1): 242-252.

    27. [27]

      [27] YANG P, CAO Y, DAI W L, DENG J F, FAN K N. Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts[J]. Appl Catal A: Gen, 2003, 243(2): 323-331.

    28. [28]

      [28] 姜瑞霞, 宋兴涛, 陈大伟, 畅延青, 谢在库. 高温氢气处理对活性炭及钯炭催化剂性能的影响[J]. 化学反应工程与技术, 2007, 23(4): 375-379. (JIANG Rui-xia, SONG Xing-tao, CHEN Da-wei, CHANG Yan-qing, XIE Zai-ku. Effects of hydrogen treatment on the properties of activated carbon and Pd/C catalysts[J]. Chem React Eng Technol, 2007, 23(4): 375-379.)

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    5. [5]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(0)
  • Abstract views(733)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return