Citation:
QIU Cheng-wu, WU Bao-shan, CHANG Qiang, LI Yong-wang. Effect of ruthenium addition on the performance of Co/SiO2 catalyst for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(10): 1230-1238.
-
Three Co/SiO2 catalysts doped with different amounts of Ru were prepared by incipient wetness impregnation. These catalysts were characterized by N2 physisorption, XRD, H2-TPD, DRIFTS, etc.; their catalytic performance in Fischer-Tropsch (F-T) synthesis was investigated in a micro fixed-bed reactor. The F-T reaction results showed that the Co/SiO2 catalysts doped with Ru exhibit higher CO conversion, higher turnover frequency (TOF), lower selectivity to CO2 and CH4, as well as lower ratio of olefin to paraffin, in comparison with undoped Co/SiO2. FT-IR spectra indicated that the Co-O bond in the as-prepared catalyst is weakened by the addition of Ru, which facilitates the reduction of the Co/SiO2 catalysts; such results are also supported by the H2-TPR profiles and XRD patterns of the reduced catalysts. The main cobalt phase in the reduced catalyst with 0.5% (by weight) of Ru is in a hexagonal close packing (hcp) structure. CO-DRIFTS results revealed that the peak of linearly adsorbed CO is red-shifted by the addition of Ru, suggesting an improvement on the dissociation of adsorbed CO. CO-TPD results showed that the ratio of COads/Cos and CO*/Cos on catalysts surface is increased by the addition of Ru, which may contribute to the decrease of the selectivity to CH4 in F-T synthesis.
-
Keywords:
- Ru,
- cobalt catalyst,
- surface adsorption,
- F-T synthesis
-
-
-
[1]
[1] SONG D, LI J, CAI Q. In situ diffuse reflectance FT-IR study of CO adsorbed on a cobalt catalyst supported by silica with different pore sizes[J]. J Phys Chem C, 2007, 111: 18970-18979.
-
[2]
[2] 孙予罕, 陈建刚, 王俊刚, 贾丽涛, 侯博, 李德宝, 张娟. 费托合成钴基催化剂的研究进展[J]. 催化学报, 2010, 31(8): 919-927. (SUN Yu-han, CHEN Jian-gang, WANG Jun-gang, JIA Li-tao, HOU Bo, LI De-bao, ZHANG Juan. The development of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. Chin J Catal, 2010, 31(8): 919-927.)
-
[3]
[3] BOTES F G, NIEMANTSWERDRIET J W, VAN DE LOOSDRECHT J. A comparison of cobalt and iron based slurry phase Fischer-Tropsch synthesis[J]. Catal Today, 2013, 215: 112-120.
-
[4]
[4] PRIETO G, MARTÍNEZ A, CONCEPCIÓN P, MORENO-TOST R. Cobalt particle size effects in Fischer-Tropsch synthesis: Structural and in situ spectroscopic characterization on reverse micelle-synthesised Co/ITQ-2 model catalysts[J]. J Catal, 2009, 266: 129-144.
-
[5]
[5] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev, 2007, 107: 1692-1744.
-
[6]
[6] MARTÍNEZ A, PRIETO G. Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles[J]. J Catal, 2007, 245: 470-476.
-
[7]
[7] WANG Z, SKILES S, YANG F, YAN Z, GOODMAN D W. Particle size effects in Fischer-Tropsch synthesis by cobalt[J]. Catal Today, 2012, 181: 75-81.
-
[8]
[8] REUEL R C, BARTHOLOMEW C H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt[J]. J Catal, 1984, 85(1): 78-88.
-
[9]
[9] 石利红, 李德宝, 侯博, 孙予罕. 有机改性二氧化硅及其负载钴催化剂的费托合成反应性能[J]. 催化学报, 2007, 28(11): 999-1002. (SHI Li-hong, LI De-bao, HOU Bo, SUN Yu-han. Organic modification of SiO2 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis[J]. Chin J Catal, 2007, 28(11): 999-1002.)
-
[10]
[10] 贾丽涛. 钴锆共沉淀催化剂预处理及其对费托合成反应影响的研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2007. (JIA Li-tao. Studies of pretreatment for co-precipitated Co-ZrO2 catalysts and its influence on Fischer-Tropsch synthesis[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2007.)
-
[11]
[11] BELAMBE A R, OUKACI R, GOODWIN J G Jr. Effect of pretreatment on the activity of a Ru-promoted Co/Al2O3 Fischer-Tropsch catalyst[J]. J Catal, 1997, 166: 8-15.
-
[12]
[12] MARÍA J, GARBALLO G, FINOCCHIO E, RODRIGUEZ S G, OJEDA M, FIERRO J L G, BUSCA G, ROJAS S. Insights into the deactivation and reactivation of Ru/TiO2 during Fischer-Tropsch synthesis[J]. Catal Today, 2013, 214: 2-11.
-
[13]
[13] TRÉPANIER M, TAVASOLI A, DALAI A K, ABATZOGLOU N. Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2009, 353: 193-202.
-
[14]
[14] PARK J Y, LEE Y J, KARANDIKAR P R, JUN K W, BAE J W, HA K S. Ru promoted cobalt catalyst on γ-Al2O3 support: Influence of pre-synthesized nanoparticles on Fischer-Tropsch reaction[J]. J Mol Catal A: Chem, 2011, 344: 153-160.
-
[15]
[15] 高海燕. 改性商业硅胶担载的钴基催化剂用于合成重质烃反应的研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2003. (GAO Hai-yan. Cobalt-based catalysts supported on modified commercial silica for synthesis of long-chain hydrocarbon[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2003. )
-
[16]
[16] BORG Ø, DIETZEL P D C, SPJELKAVIK A I, TVETEN E Z, WALMSLEY J C, DIPLAS S, ERI S, HOLMEN A, RYTTER E. Fischer-Tropsch synthesis: Cobalt particle size and particle size and support effects on intrinsic activity and product distribution[J]. J Catal, 2008, 259: 161-164.
-
[17]
[17] JUNG J S, LEE J S, CHOI G, RAMESH S, MOON D J. The characterization of micro-structure of cobalt on γ-Al2O3 for FTS: Effects of pretreatment on Ru-Co/γ-Al2O3[J]. Fuel, 2015, 149: 118-129.
-
[18]
[18] TAGHAVIMOHADDAM J, KNOWLES G P, CHAFFEE A L. Preparation and characterization of mesoporous silica supported cobalt oxide as a catalyst for the oxidation of cyclohexanol[J]. J Mol Catal A: Chem, 2012, 358: 79-88.
-
[19]
[19] SANTOS G A, SANTO C M B, DA SILÜA S W, URQUIETA-GONZÁLEZ E A, SARTORATTO P P C. Sol-gel synthesis of silica-cobalt composites by employing Co3O4 colloidal dispersions[J]. Colloids Surf A: Physicochem Eng Aspects, 2012, 395: 217-224.
-
[20]
[20] DU PLESSIS H E, FORBES R P, BARNARD W, ERASMUS W J, STEUWER A. In situ reduction study of cobalt model Fischer-Tropsch synthesis catalysts[J]. Phys Chem Chem Phys, 2013, 15: 11640-11645.
-
[21]
[21] INFANTES-MOLINA A, MÉRIDA-ROBLES J, RODRÍGUEZ-CASTELLÓN E, FIERRO J L G, JIMÉNEZ-LPEZ A. Synthesis, characterization and catalytic activity of ruthenium-doped cobalt catalysts[J]. Appl Catal A: Gen, 2008, 341(1/2): 35-42.
-
[22]
[22] XU D, LI W, DUAN H, GE Q, XU H. Reaction performance and characterization of Co/Al2O3 Fischer-Tropsch catalysts promoted with Pt, Pd and Ru[J]. Catal Lett, 2005, 102: 229-234.
-
[23]
[23] JONGSOMJIT B, SAKDAMNUSON C, PANPRANOT J, PRASERTHDAM P. Role of ruthenium in the reduction behavior of ruthenium-promoted cobalt/titania Fischer-Tropsch catalysts[J]. React Kinet Catal Lett, 2006, 88(1): 65-71.
-
[24]
[24] REUEL R C, BARTHOLOMEW C H. The stoichiometries of H2 and CO adsorption on cobalt: Effects of supported and preparation[J]. J Catal, 1984, 85: 63-77.
-
[25]
[25] 张俊岭, 任杰, 陈建刚, 孙予罕. 锰助剂对F-T合成Co/Al2O3催化剂反应性能的影响[J]. 物理化学学报, 2002, 18(3): 260-263. (ZHANG Jun-ling, REN Jie, CHEN Jian-gang, SUN Yu-han. Effect of manganese promoter on the performance of Co/Al2O3 catalysts for Fischer-Tropsch synthesis[J]. Acta Phys Chim Sin, 2002, 18(3): 260-263.)
-
[26]
[26] DUR, LISOWSKI W. Adsorption of hydrogen on evaporated cobalt films[J]. Surf Sci, 1976, 61: 635-645.
-
[27]
[27] RODRIGUES E L, BUENO J M C. Co/SiO2 catalysts for selective hydrogenation of crotonaldehyde III. Promoting effect of zinc[J]. Appl Catal A: Gen, 2004, 257: 201-211.
-
[28]
[28] IGLESIA E, SOLED S L, FIATO R A. Fischer-Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity[J]. J Catal, 1992, 137: 212-224.
-
[29]
[29] LIU J X, SU H Y, SUN D P, ZHANG B Y, LI W X. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC[J]. J Am Chem Soc, 2013, 135: 16284-16287.
-
[30]
[30] GALHENAGE R P, YAN H, AHSEN A S, CHEN. D A Understanding the growth and chemical activity of Co-Pt bimetallic clusters on TiO2(110): CO adsorption and methanol reaction[J]. J Phys Chem C, 2014, 118(31): 17773-17786.
-
[31]
[31] SONG D, LI J. Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts[J]. J Mol Catal A: Chem, 2006, 247: 206-212.
-
[32]
[32] KUMAR N, JOTHIMURUGESAN K, STANLEY G G, SCHWARTZ V, SPIVEY J J. In situ FT-IR study on the effect of cobalt precursors on CO adsorption behavior[J]. J Phys Chem C, 2011, 115: 990-998.
-
[33]
[33] CIOBÎCÃ I M, VAN SANTEN R A, VAN BERGE P J, VAN DE LOOSDRECHT. Adsorbate induced reconstruction of cobalt surfaces[J]. Surf Sci, 2008, 602: 17-27.
-
[34]
[34] NIKOLAOS E, TSAKOUMIS, RØNNING M, BOR Ø, RYTTER E, HOLMEN A. Deactivation of cobalt Fischer-Tropsch catalysts: A review[J]. Catal Today, 2010, 154: 162-182.
-
[35]
[35] SAIB A M, MOODLEY D J, CIOBÎCÃ I M, HAUMAN M M, SIGWEBELA B H,WESTSTRATE C J, NIEMANTSVERDRIET J W, VAN DE LOOSDRECHTA J. Fundamental understanding of deactivation and regeneration of cobalt Fischer-Tropsch synthesis catalysts[J]. Catal Today, 2010, 154: 271-282.
-
[36]
[36] GNANAMANI M K, JACOBS G, DAVIS W D S B H. Fischer-Tropsch synthesis: Activity of metallic phases of cobalt supported on silica[J]. Catal Today, 2013, 215: 13-17.
-
[37]
[37] DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, FRØSETH V, HOLMEN A, DE JONG P K. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc, 2009, 131: 7197-7203.
-
[38]
[38] 高海燕, 相宏伟, 李永旺. Ru 助剂对 Co/SiO2 催化剂费托合成反应性能的影响[J]. 催化学报, 2010, 31: 307-312. (GAO Hai-yan, XIANG Hong-wei1, LI Yong-wang. Effect of Ru promoter on Fischer-Tropsch synthesis performance of Co/SiO2 catalyst[J]. Chin J Catal, 2010, 31: 307-312.)
-
[39]
[39] FISCHER N, VAN STEEN E, CLAEYS M. Structure sensitivity of the Fischer-Tropsch activity and selectivity on alumina supported cobalt catalysts[J]. J Catal, 2013, 299: 67-80.
-
[40]
[40] SCHWEICHER J. Kinetic and mechanistic studies of CO hydrogenation over cobalt-based catalysts[D]. Bruxelles, Belgium: Universite Librede Bruxelles, 2010.
-
[1]
-
-
-
[1]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[2]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[3]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[4]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[5]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[6]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[7]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[8]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[9]
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
-
[10]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[11]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[12]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[13]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[14]
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
-
[15]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[16]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[17]
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
-
[18]
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
-
[19]
Tianyi Yang , Fangxi Su , Dehuan Shi , Shenghong Zhong , Yalin Guo , Zhaohui Liu , Jianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444
-
[20]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(827)
- HTML views(104)