Citation: SUN Kai, ZHANG Xiao-yu, ZHANG Lin, BIAN Zhong-kai, HUANG Wei, ZHAO Zhi-huan. Influence of acid and alkaline silica sol on the performance of Cu/Zn/Al slurry catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(10): 1221-1229. shu

Influence of acid and alkaline silica sol on the performance of Cu/Zn/Al slurry catalysts

  • Corresponding author: HUANG Wei,  ZHAO Zhi-huan, 
  • Received Date: 28 May 2015
    Available Online: 19 July 2015

    Fund Project: 国家自然科学基金重点项目(21336006) (21336006)国家自然科学基金面上项目(21176176) (21176176)高等学校博士学科点专项(优先发展领域)(20111402130002)资助 (优先发展领域)(20111402130002)

  • A series of Cu/Zn/Al/Si slurry catalysts were prepared by the complete liquid-phase technology with acid and alkaline silica sol in the paper. The catalysts are characterized by means of XRD, H2-TPR, FT-IR, BET, NH3-TPD, XPS and TEM. When the acid silica sol is added, which has the similar environment with the process of precursor preparation, the conversion of CO and selectivity of dimethyl ether reach maxiumum, being 65.38% and 76.26% respectively. The acid silica sol weakens the force between Cu and other components, resulting in the Cu component is easy to be reduced and more active lattice planes of Cu0 on the catalyst are exposed. The acid/alkaline properties of silica sol influence acid site strength and the number of acid sites of catalysts and make both strong acidic sites and the weak acidic sites migrate to lower temperature position. In DME synthesis reaction, it is found that the acid silica sol can increase the ratio of the weak acidic sites to the strong acidic sites on the catalysts, which promotes dehydration performance of methanol and the selectivity of DME. In addition, the catalysts with large specific surface area and mesoporous pore structure are favorable for the activity and selectivity of DME.
  • 加载中
    1. [1]

      [1] SAN X G, ZHANG Y, SHEN W J, TSUBAKI N. New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst[J]. Energy Fuels, 2009, 23(5): 2843-2844.

    2. [2]

      [2] 胡益之, 李洪晋, 韩冬青. 21世纪洁净燃料—二甲醚[J]. 煤化工, 2006, 34(5): 10-14. (HU Yi-zhi, LI Hong-jin, HAN Dong-qing. Dimethyl ether-the clean fuel in the 21st century[J]. Coal Chem Ind, 2006, 34(5): 10-14.)

    3. [3]

      [3] CAI G Y, LIU Z M, SHI R M, HE C Q, YANG L X, SUN C L, CHANG Y J. Light alkenes from syngas via dimethyl ether[J]. Appl Catal A: Gen, 1995, 125(1): 29-38.

    4. [4]

      [4] VENUGOPAL A, PALGUNADI J, DEOG J K, JOO O S, SHIN C H. Dimethyl ether synthesis on the admixed catalysts of Cu-Zn-Al-M (M= Ga, La, Y, Zr) and γ-Al2O3: The role of modifier[J]. J Mol Catal A: Chem, 2009, 302(1): 20-27.

    5. [5]

      [5] ADACHI Y, KOMOTO M, WATANABE I, OHNO Y, FUJIMOTO K. Effective utilization of remote coal through dimethyl ether synthesis[J]. Fuel, 2000, 79(3/4): 229-234.

    6. [6]

      [6] PENG X D, TOSELAND B A, TIJM P J A. Kinetic understanding of the chemical synergy under LPDME conditions—once-through applications[J]. Chem Eng Sci, 1999, 54(13/14): 2787-2792.

    7. [7]

      [7] 赵宁, 陈小平, 任杰, 孙予罕. 浆态床合成二甲醚反应工艺条件的研究[J]. 天然气化工, 2000, 25(3): 1-5. (ZHAO Ning, CHEN Xiao-ping, REN Jie, SUN Yu-han. Effect of operation parameters on dimethyl ether synthesis in slurry bed[J]. Nat Gas Chem Ind, 2000, 25(3): 1-5.)

    8. [8]

      [8] TAN Y S, XIE H J, CUI H T, HAN Y Z, ZHONG B. Modification of Cu-based methanol synthesis catalyst for dimethyl ether synthesis from syngas in slurry phase[J]. Catal Today, 2005, 104(1): 25-29.

    9. [9]

      [9] ZENG C Y, SUN J, YANG G H, OOKI I, HAYASHI K, YONEYAMA Y, TAGUCHI A, ABE T, TSUBAKI N. Highly selective and multifunctional Cu/ZnO/zeolite catalyst for one-step dimethyl ether synthesis: Preparing catalyst by bimetallic physical sputtering[J]. Fuel, 2013, 112: 140-144.

    10. [10]

      [10] MORADI G R, NOSRATI S, YARIPOR F. Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas[J]. Catal Commun, 2007, 8(3): 598-606.

    11. [11]

      [11] AHMAD R, SCHREMPP D, BEHRENS S, SAUER J, DORING M, ARNOLD U. Zeolite-based bifunctional catalysts for the single step synthesis of dimethyl ether from CO-rich synthesis gas[J]. Fuel Process Technol, 2014, 121(1): 38-46.

    12. [12]

      [12] PRASAD P S S, BAE J W, KANG S H, LEE Y J, JUN K W. Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: The superiority of ferrierite over the other zeolites[J]. Fuel Process Technol, 2008, 89(12): 1281-1286.

    13. [13]

      [13] MORADI G R, NOSRATI S, YARIPOR F. Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas[J]. Catal Commun, 2007, 8(3): 598-606.

    14. [14]

      [14] 黄伟, 高志华, 郝利峰, 阴丽华, 谢克昌. 浆态床催化剂及制备方法: 中国, 1314491C[P]. 2007-05-09. (HUANG Wei, GAO Zhi-hua, HAO Li-fen, Yin Li-hua, XIE Ke-chang. The liquid phase preparation technology of catalyst used in slurry reactor: CN, 1314491C[P]. 2007-05-09.)

    15. [15]

      [15] 樊金串, 吴慧, 黄伟, 石宇, 谢克昌. 完全液相法制备中原料配比对二甲醚合成催化剂结构和性能的影响[J]. 催化学报, 2007, 28(12): 1062-1066. (FAN Jin-chuan, WU Hui, HUANG Wei, SHI Yu, XIE Ke-chang. Effect of composition of raw materials on structure and dimethyl ether synthesis activity of Cu-Zn-Al catalyst prepared by complete liquid phase method[J]. Chin J Catal, 2007, 28(12): 1062-1066.)

    16. [16]

      [16] GAO Z H, HUANG W, YIN L H, XIE K C. Liquid-phase preparation of catalysts used in slurry reactors to synthesize dimethyl ether from syngas: Effect of heat-treatment atmosphere[J]. Fuel Process Technol, 2009, 90(12): 1442-1446.

    17. [17]

      [17] 高志华, 黄伟, 王将永, 阴丽华, 谢克昌. Cu-Zn-Al-Zr合成二甲醚浆状催化剂的完全液相制备及表征[J].化学学报, 2008, 66(3): 295-300. (GAO Zhi-hua, HUANG Wei, WANG Jiang-yong, YIN Li-hua, XIE Ke-chang. Complete liquid-phase preparation and characterization of Cu-Zn-Al-Zr slurry catalysts for synthesis of dimethyl ether[J]. Acta Chim Sin, 2008, 66(3): 295-300.)

    18. [18]

      [18] FAN J C, CHEN C Q, ZHAO J, HUANG W, XIE K C. Effect of surfactant on structure and performance of catalysts for DME synthesis in slurry bed[J]. Fuel Process Technol, 2010, 91(4): 414-418.

    19. [19]

      [19] LI Z Z, ZUO Z J, HUANG W, XIE K C. Research on Si-Al based catalysts prepared by complete liquid-phase method for DME synthesis in a slurry reactor[J]. Appl Surf Sci, 2011, 257: 2180-2183.

    20. [20]

      [20] 唐钰, 黄伟, 韩涛, 孙凯, 王鹏. 完全液相法Cu-Zn-Al-Si催化剂一步合成二甲醚[J]. 应用化学, 2015, 32(1): 76-84. (TANG Yu, HUANG Wei, HAN Tao, SUN Kai, WANG Peng. Performance of Cu-Zn-Al-Si catalyst prepared by a complete liquid-phase technology for dimethyl ether synthesis[J]. Chin J Appl Chem, 2015, 32(1): 76-84.)

    21. [21]

      [21] 王鹏. 浆态床一步法合成二甲醚催化剂制备工艺的研究[D]. 太原: 太原理工大学, 2013. (WANG Peng. Study on the preparation technology of catalyst for dme synthesis in slurry reactor[D]. Taiyuan: Taiyuan University of Technology, 2013.)

    22. [22]

      [22] 王鹏, 黄伟, 唐钰, 孙凯, 张小雨.完全液相制备中醇溶剂及醇用量对催化剂性能的影响[J]. 太原理工大学学报, 2013, 44(5): 551-556. (WANG Peng, HUANG Wei, TANG Yu, SUN Kai, ZHANG Xiao-yu. Effect of alcohols and usage amount on performance of catalyst prepared by complete liquid phase technology[J]. J Taiyuan Univ Technol, 2013, 44(5): 551-556.)

    23. [23]

      [23] 樊金串, 杨瑞卿, 赵杰, 黄伟. 液体石蜡体系中含铜物种的化学变化[J]. 应用化学, 2013, 30(1): 67-72. (FAN Jin-chuan, YANG Rui-qing, ZHAO Jie, HUANG Wei. Chemical change of copper species in liquid paraffin[J]. Chin J Appl Chem, 2013, 30(1): 67-72.)

    24. [24]

      [24] ADAMCZYK A, DLUGON E. The FT-IR studies of gels and thin films of Al2O3-TiO2 and Al2O3-TiO2-SiO2 systems[J]. Spectrochim Acta Part A, 2012, 89: 11-17.

    25. [25]

      [25] 马金霞, 彭毓秀, 李忠正. 改性微粒硅溶胶的结构和形态[J].中国造纸学报, 2006, 20(2): 139-142. (MA Jin-xia, PENG Yu-xiu, LI Zhong-zheng. Structure of modified silica sol[J]. Trans China Pulp Pap, 2006, 20(2): 139-142.)

    26. [26]

      [26] PULIGILLA S, MONDAL P. Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FT-IR spectral subtraction[J]. Cem Concr Res, 2015, 70: 39-49.

    27. [27]

      [27] MA Z L, LI C C, WEI H M, DING D Q. Silica sol-gel anchoring on aluminum pigments surface for corrosion resistance based on aluminum oxidized by hydrogen peroxide[J]. Dyes Pigments, 2015, 114: 253-258.

    28. [28]

      [28] CHEN C S, CHENG W H, LIN S S. Study of iron-promoted Cu/SiO2catalyst on high temperature reverse water gas shift reaction[J]. Appl Catal A: Gen, 2004, 257(1): 97-106.

    29. [29]

      [29] XIONG W H, PENG J, HU Y F. A non-destructive technique to analyze Si content in evaluation of pore blockageof ferrihydrite-modified diatomite using XANES and BET[J]. Microporous Mesoporous Mater, 2010, 133: 54-58.

    30. [30]

      [30] 马强, 黄伟, 樊金串, 赵杰, 任杰. 完全液相法制备的 Cu-Zn-Si-Al浆状催化剂一步法合成二甲醚的失活研究[J]. 分子催化, 2009, 23(6): 499-505. (MA Qiang, HUANG Wei, FAN Jin-chuan, ZHAO Jie, REN Jie.Study on the deactivation of Cu-Zn-Si-Al slurry catalyst prepared by complete liquid-phase for one-step dimethyl ether synthesis[J]. J Mol Catal, 2009, 23(6): 499-505.)

    31. [31]

      [31] RAMOS F S, FARIAS A M, BORGES L E P, MONTEIRO J L, FRAGA M A, SOUSA A, APPEL L G. Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures[J]. Catal Today, 2005, 101(1): 39-44.

    32. [32]

      [32] YARIPOUR F, SHARIATINIA Z, SAHEBDELFAR S, IRANDOUKHT A. The effects of synthesis operation conditions on the properties of modified γ-alumina nanocatalysts in methanol dehydration to dimethyl ether using factorial experimental design[J]. Fuel, 2015, 139(1): 40-50.

    33. [33]

      [33] NAKAMURA J, NAKAMURA I, UCHIJIMA T, KANAI Y, WATANABE T, SAITO M, FUJITANI T. A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface[J]. J Catal, 1996, 160(1): 65-75.

    34. [34]

      [34] LU D, ZHU Y, SUN Y. Cu nanoclusters supported on Co nanosheets for selective hydrogenation of CO[J]. Chin J Catal, 2013, 34(11): 1998-2003.

    35. [35]

      [35] HU Z M, NAKATSUJI H. Active sites for methanol synthesis on a Zn/Cu(100) catalyst[J]. Chem Phys Lett, 1999, 313(1): 14-18.

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    3. [3]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    7. [7]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    10. [10]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Yuhao Chen Zhuo Cheng Qijun Hu Jian Pei . 酸碱理论的发展历程. University Chemistry, 2025, 40(8): 368-375. doi: 10.12461/PKU.DXHX202412001

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(0)
  • Abstract views(867)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return