Citation: YANG Guang, ZHANG Yan-wei, KOU Xi-wen, ZHOU Zhi-jun, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion and thermodynamic simulation of ash deposition during Zhundong coal combustion in boiler of thermal power plant[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(10): 1182-1187. shu

Mineral conversion and thermodynamic simulation of ash deposition during Zhundong coal combustion in boiler of thermal power plant

  • Corresponding author: ZHANG Yan-wei, 
  • Received Date: 12 May 2015
    Available Online: 8 July 2015

    Fund Project: 国家重点基础研究发展规划(973计划,2012CB214906)资助项目 (973计划,2012CB214906)

  • Zhundong coal blending was combusted in a 350 MW boiler. Ash deposits samples at different heat transfer surface (HTS) were collected to investigate mineral conversion of each sample. Thermodynamic equilibrium calculation was carried out to give theoretical support by virtue of Factsage 5.2. Different mechanism of each HTS was concluded as follows. At high temperature HTS, albite, anorthite and other phases help eutectics precipitate take shape, which adheres to fly ash particles and forms indurate bulk ash deposits. At low temperature HTS, sulphur-containing species are condensed from flue gas to form deposits with evidence that the main crystalline phase is anhydrite. At economizer HTS, The deposits consisted of amorphous phases carried by flue gas are loosely bonded. Calculated results by Factsage basically agreed with the phase composition of actual samples and are of assistance to mineral conversion analyses.
  • 加载中
    1. [1]

      [1] 严陆光, 夏训诚, 吕绍勤, 吴甲春, 林闽, 黄常纲. 大力推进新疆大规模综合能源基地的发展[J]. 电工电能新技术, 2011, 30(1): 1-7. (YAN Lu-guang, XIA Xun-cheng, LÜ Shao-qin, WU Jia-chun, LIN Min, Huang Chang-gang. Great promotion of development of large scale integrative energy base in Xinjiang[J]. Adv Technol Elec Eng Energy, 2011, 30(1): 1-7.)

    2. [2]

      [2] 李鹏, 曾琦, 任建平, 俞立洋. 燃用准东煤对锅炉运行的影响[J]. 华电技术, 2015, 37(1): 68-70. (LI Peng, ZENG Qi, REN Jian-ping, YU Li-yang. Influence of blending combustion of east Junggar coal on boiler operation[J]. Huadian Technol, 2015, 37(1): 68-70.)

    3. [3]

      [3] 陈川, 张守玉, 刘大海, 郭熙, 董爱霞, 熊绍武, 施大钟, 吕俊复. 新疆高钠煤中钠的赋存形态及其对燃烧过程的影响[J]. 燃料化学学报, 2013, 41(7): 832-838. (CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, LIU Da-hai, GUO Xi, DONG Ai-xia, XIONG Shao-wu, SHI Da-zhong, LÜ Jun-fu. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J].J Fuel Chem Technol, 2013, 41(7): 832-838.)

    4. [4]

      [4] 郭涛, 曹林涛, 黄中, 江建忠, 徐正泉. 准东高钠煤燃烧利用技术研究[J]. 煤炭技术, 2015, 34(1): 331-333. (GUO Tao, CAO Lin-tao, HUANG Zhong, JIANG Jian-zhong, XU Zheng-quan. Research on using technology in Zhundong high sodium coal combustion[J]. Coal Technol, 2015, 34(1): 331-333.)

    5. [5]

      [5] 常家星, 杨忠灿. 能够保证锅炉安全运行的准东煤灰沾污指标研究[J]. 锅炉技术, 2013, 44(6): 17-19. (CHANG Jia-xing, YANG Zhong-can. Study on Zhundong coal's ash fouling indicator to ensure safe operation of boilers[J]. Boiler Technol, 2013, 44(6): 17-19.)

    6. [6]

      [6] 刘璀巍, 胡龙. 苇湖梁电厂锅炉燃用新疆准东煤特性研究[J]. 发电与空调, 2012, 33(6): 45-47. (LIU Cui-wei, HU Long. Study on propertites of Zhundong coal in Xinjiang region[J]. Power Gener Air Cond, 2012, 33(6): 45-47.)

    7. [7]

      [7] 武利斌. 某锅炉掺烧准东煤的优化试验[J]. 华电技术, 2014, 36(8): 38-43. (WU Li-bin. Optimization experiment of east Junggar coal blending combustion in a boiler[J]. Huadian Technol, 2014, 36(8): 38-43.)

    8. [8]

      [8] 杨忠灿, 刘家利, 何红光. 新疆准东煤特性研究及其锅炉选型[J]. 热力发电, 2010, 39(8): 38-40. (YANG Zhong-can, LIU Jia-li, HE Hong-guang. Study on properties of zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J]. Therm Power Gener, 2010, 39(8): 38-40.)

    9. [9]

      [9] GENGDA L, SHUIQING L, QIAN H, QIANG Y. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015, 143: 430-437.

    10. [10]

      [10] YUAN Y, LI S, YAO Q. Dynamic behavior of sodium release from pulverized coal combustion by phase-selective laser-induced breakdown spectroscopy[J]. Proc Comb Inst, 2015, 35(2): 2339-2346.

    11. [11]

      [11] XUEBIN W, ZHAOXIA X, BO W, LAN Z, HOUZHANG T, TAO Y, HRVOJE M, NEVEN D. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015, 80: 150-159.

    12. [12]

      [12] GUANGYU L, CHANG'AN W, YU Y, XI J, YINHE L, DEFU C. Release and transformation of sodium during combustion of Zhundong coals[J]. J Energy Inst, 2015, in press.

    13. [13]

      [13] 俞海淼, 曹欣玉, 周俊虎, 岑可法. 高碱灰渣烧结熔融过程中的物相变化[J]. 煤炭学报, 2007, 32(12): 1316-1319. (YU Hai-miao, CAO Xin-yu, ZHOU Jun-hu, CEN Ke-fa. Phase transformation of high alkaline ash residue on the process of sintering and fusion[J]. J China Coal Soc, 2007, 32(12): 1316-1319.)

    14. [14]

      [14] 陶玉洁, 张彦威, 周俊虎, 景雪晖, 李涛, 刘建忠, 岑可法. 准东煤在燃烧过程中的矿物演变过程及 Na, Ca 释放规律[J]. 中国电机工程学报, 2015, 35(5): 1169-1175. (TAO Yu-jie, ZHANG Yan-wei, ZHOU Jun-hu, JING Xue-hui, LI Tao, LIU Jian-zhong, CEN Ke-fa. Mineral conversion regularity and release behavior of Na, Ca during Zhundong coal's combustion[J]. Proc CSEE, 2015, 35(5): 1169-1175.)

    15. [15]

      [15] 马岩, 黄镇宇, 唐慧儒, 王智化, 周俊虎, 岑可法. 准东煤灰化过程中的矿物演变及矿物添加剂对其灰熔融特性的影响[J]. 燃料化学学报, 2014, 42(1): 20-25. (MA Yan, HUANG Zhen-yu, TANG Hui-ru, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics[J]. J Fuel Chem Technol, 2014, 42(1): 20-25.)

    16. [16]

      [16] 韩克鑫, 黄镇宇, 王智化, 周俊虎. 准东煤灰渣烧结熔融过程中钠基化合物作用机理研究[J]. 燃料化学学报, 2015, 43(1): 22-26. (HAN Ke-xin, HUANG Zhen-yu, WANG Zhi-hua, ZHOU Jun-hu. Action mechanism of sodium compounds in Zhundong coal ash on the process of sintering and fusion[J]. J Fuel Chem Technol, 2015, 43(1): 22-26.)

    17. [17]

      [17] 付子文, 王长安, 车得福, 翁青松. 成灰温度对准东煤灰理化特性影响的实验研究[J]. 工程热物理学报, 2014, 35(3): 609-613. (FU Zi-wen, WANG Chang-an, CHE De-fu, WENG Qing-song. Experimental study on the effect of ashing temperature on physicochemical properties of Zhundong coal ashes[J]. J Eng Thermophys, 2014, 35(3): 609-613.)

    18. [18]

      [18] ZHOU B, ZHOU H, WANG J, CEN K. Effect of temperature on the sintering behavior of Zhundong coal ash in oxy-fuel combustion atmosphere[J]. Fuel, 2015, 150: 526-537.

    19. [19]

      [19] 黄镇宇, 李燕, 赵京, 周志军, 周俊虎, 岑可法. 不同灰成分的低熔点煤灰熔融性调控机理研究[J]. 燃料化学学报, 2012, 40(9): 1038-1043. (HUANG Zhen-yu, LI Yan, ZHAO Jing, ZHOU Zhi-jun, ZHOU Jun-hu, CEN Ke-fa. Ash fusion regulation mechanism of coal with low melting point and different ash compositions[J]. J Fuel Chem Technol, 2012, 40(9): 1038-1043.)

    20. [20]

      [20] 范建勇. 准东煤结渣特性及其配煤灰熔融性试验研究[D]. 杭州: 浙江大学, 2014. (FAN Jian-yong. Research on Zhundong coal's slagging characteristic and its ash fusibility of blending coal[D]. Hangzhou: Zhejiang University, 2014.)

    21. [21]

      [21] 李帆, 邱建荣, 郑楚光. 煤中矿物质对灰熔融温度影响的三元相图分析[J]. 华中理工大学学报, 1996, 24(10): 96-99. (LI Fan, QIU Jian-rong, ZHENG Chu-guang. The effect of mineral matter in coal on the ash melting point with ternary phase diagram[J]. J Huazhong Uni Sci Technol, 1996, 24(10): 96-99.)

  • 加载中
    1. [1]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    2. [2]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    3. [3]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    6. [6]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    7. [7]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    8. [8]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    13. [13]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    17. [17]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    18. [18]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    19. [19]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    20. [20]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

Metrics
  • PDF Downloads(0)
  • Abstract views(393)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return