Citation: YIN Yan-shan, ZHANG Yi, CHEN Hou-tao, LIU Liang, YAN Xiao-zhong, CHEN Dong-lin. Characterization of mineral matters and carbonaceous structure of high-ash coals by vibrational spectroscopy[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(10): 1167-1175. shu

Characterization of mineral matters and carbonaceous structure of high-ash coals by vibrational spectroscopy

  • Corresponding author: YIN Yan-shan, 
  • Received Date: 26 February 2015
    Available Online: 3 June 2015

    Fund Project: 国家自然科学基金青年科学基金(51206012) (51206012)湖南省高等学校科学研究项目(12C0005) (12C0005)可再生能源电力技术湖南省重点实验室开放基金(2012ZNDL005)资助项目 (2012ZNDL005)

  • Mineral matters and carbonaceous structure of both raw and acid-washed Guangxi Heshan (GX) and Pingdingshan (PD) coals were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Raman spectroscopy and X-ray diffraction (XRD). The FT-IR spectra demonstrate that the two raw coals are most abundant in kaolinite, followed by quartz and calcite. Some new mineral matters such as muscovite, serpentine, gypsum and alkali-feldspar are clearly observed from the second derivative FT-IR spectra. In addition, three OH stretching vibration peaks are shown in the FT-IR spectra at 3 695, 3 651 and 3 619 cm-1, indicating that the kaolinite in coals is not well crystallized. For demineralized coals, aromatic C=C peak (1 600 cm-1) and (002) diffraction peak of microcrystalline carbon are obviously shown in FT-IR and XRD spectra, respectively. In the case of raw coals, both FT-IR and XRD spectra show that the carbonaceous structure is almost completely inhibited by mineral matters. However, the defect carbon (D peak) and graphite carbon (G peak) are clearly found in the Raman spectra for both raw and acid-washed coals, since the mineral matters are completely inhibited by carbon due to more intensive signal. The crystalline carbon is found to be slightly less ordered for demineralized coals than for raw coals, and therefore the carbonaceous structure is slightly affected by acid treatment.
  • 加载中
    1. [1]

      [1] CHEN Y, MASTALERZ M, SCHIMMELMANN A. Characterization of chemical functional groups in macerals across different coal ranks via micro FT-IR spectroscopy[J]. Int J Coal Geol, 2012, 104: 22-33.

    2. [2]

      [2] STRYDOM C A, BUNT J R, SCHOBERT H H, RAGHOO M. Changes to the organic functional groups of an inertinite rich medium rank bituminous coal during acid treatment processes[J]. Fuel Process Technol, 2011, 92(4): 764-770.

    3. [3]

      [3] 梁虎珍, 王传格, 曾凡桂, 李美芬, 相建华. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报, 2014, 42(2): 129-137. (LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol, 2014, 42(2): 129-137.)

    4. [4]

      [4] 石金明, 孙路石, 向军, 胡松, 赵清森, 苏胜, 许凯, 卢腾飞. 兖州煤气化半焦表面官能团特征试验研究[J]. 中国电机工程学报, 2010, 30(5): 17-22. (SHI Jin-ming, SUN Lu-shi, XIANG Jun, HU Song, ZHAO Qing-sen, SU Sheng, XU Kai, LU Teng-fei. Experimental study on surface functional groups characteristics of Yanzhou semi-cokes of gasification[J]. Proc CSEE, 2010, 30(5): 17-22.)

    5. [5]

      [5] 蔺华林, 李克健, 章序文. 上湾煤及其惰质组富集物的结构表征与模型构建[J]. 燃料化学学报, 2013, 41(6): 641-648. (LIN Hua-lin, LI Ke-jian, ZHANG Xu-wen. Structure characterization and model construction of Shangwan coal and it's inertinite concentrated[J]. J Fuel Chem Technol, 2013, 41(6): 641-648.)

    6. [6]

      [6] COOKE N E, FULLER O M, GAIKWAD R P. FT-i.r. spectroscopic analysis of coals and coal extracts[J]. Fuel, 1986, 65(9): 1254-1260.

    7. [7]

      [7] 惠贺龙, 付兴民, 王小华, 韦云钊, 贾晋炜, 舒新前. 洗选对煤结构及其热解特性的影响[J]. 中国电机工程学报, 2013, 33(23): 68-74. (HUI He-long, FU Xing-min, WANG Xiao-hua, WEI Yun-zhao, JIA Jin-wei, SHU Xin-qian. Effect of washing process on the structure and pyrolysis characteristics of coal[J]. Proc CSEE, 2013, 33(23): 68-74.)

    8. [8]

      [8] IBARRA J, MOLINER R, BONET A J. FT-i.r. investigation on char formation during the early stages of coal pyrolysis[J]. Fuel, 1994, 73(6): 918-924.

    9. [9]

      [9] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002, 31(5): 362-366. (FENG Jie, LI Wen-ying, XIE Ke-chang. Research on coal structure using FT-IR[J]. J Chin Univ Mining Technol, 2002, 31(5): 362-366.)

    10. [10]

      [10] MUKHERJEE S, SRIVASTAVA S. Minerals transformations in northeastern region coals of India on heat treatment[J]. Energy Fuels, 2006, 20(3): 1089-1096.

    11. [11]

      [11] IBARRA J, PALACIOS J, DE ANDRÉS A M. Analysis of coal and char ashes and their ability for sulphur retention[J]. Fuel, 1989, 68(7): 861-867.

    12. [12]

      [12] GREEN P D, JOHNSON C A, THOMAS K M. Applications of laser Raman microprobe spectroscopy to the characterization of coals and cokes[J]. Fuel, 1983, 62(9): 1013-1023.

    13. [13]

      [13] 尹艳山, 王泽忠, 田红, 张巍, 鄢晓忠, 陈冬林. 热解温度对无烟煤焦微观结构和脱硝特性的影响[J]. 化工进展, 2015, 34(6): 1636-1640. (YIN Yan-shan,WANG Ze-zhong,TIAN Hong,ZHANG Wei,YAN Xiao-zhong,CHEN Dong-lin. Effect of pyrolysis temperature on microstructure and de-NOx reactivity of anthracite char[J]. Chem Ind Eng Prog, 2015, 34(6): 1636-1640.)

    14. [14]

      [14] 李美芬, 曾凡桂, 齐福辉, 孙蓓蕾. 不同煤级煤的Raman谱特征及与XRD结构参数的关系[J]. 光谱学与光谱分析, 2009, 29(9): 2446-2449. (LI Mei-fen, ZENG Fan-gui, QI Fu-hui, SUN Bei-lei. Raman spectroscopic characteristics of different rank coals and the relation with XRD structural parameters[J]. Spectrosc Spect Anal, 2009, 29(9): 2446-2449.)

    15. [15]

      [15] MORGA R, JELONEK I, KRUSZEWSKA K. Relationship between coking coal quality and its micro-Raman spectral characteristics[J]. Int J Coal Geol, 2014, 134-135: 17-23.

    16. [16]

      [16] DE BENEDETTO G, LAVIANO R, SABBATINI L, ZAMBONIN P G. Infrared spectroscopy in the mineralogical characterization of ancient pottery[J]. J Cult Herit, 2002, 3(3): 177-186.

    17. [17]

      [17] WU L M, TONG D S, ZHAO L Z, YU W H, ZHOU C H, WANG H. Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite[J]. Appl Clay Sci, 2014.

    18. [18]

      [18] 闻辂. 矿物红外光谱学 [M]. 重庆: 重庆大学出版社, 1988. (WEN Lu. The infrared spectroscopy of minerals[M]. Chongqing: Chongqing University Press, 1988.)

    19. [19]

      [19] SHOVAL S, NATHAN Y. Analyzing the calcination of sulfur-rich calcareous oil shales using FT-IR spectroscopy and applying curve-fitting technique[J]. J Therm Anal Calorim, 2011, 105(3): 883-896.

    20. [20]

      [20] 韩秀伶, 陈开惠. 高岭石-多水高岭石演化系列的红外吸收光谱研究[J]. 地质科学, 1982, (1): 71-79. (HAN Xiu-ling, CHEN Kai-hui. Study of infrared absorption spectra on the kaolinite-halloysite evolutionary series[J]. Chin J Geol, 1982, (1): 71-79.)

    21. [21]

      [21] SAIKIA N, BHARALI D, SENGUPTA P, BORDOLOI D, GOSWAMEE R L, SAIKIA P C, BORTHAKUR P C. Characterization, beneficiation and utilization of a kaolinite clay from Assam, India[J]. Appl Clay Sci, 2014, 95(1): 74-82.

    22. [22]

      [22] GHOORAH M, DLUGOGORSKI B Z, OSKIERSKI H C, KENNEDY E M. Study of thermally conditioned and weak acid-treated serpentinites for mineralisation of carbon dioxide[J]. Miner Eng, 2014, 59: 17-30.

    23. [23]

      [23] 陈路, 周志杰, 刘鑫, 袁帅, 王辅臣. 煤快速热解焦的微观结构对其气化活性的影响[J]. 燃料化学学报, 2012, 40(6): 648-654. (CHEN Lu, ZHOU Zhi-jie, LIU Xin, YUAN Shuai, WANG Fu-chen. Effect of microstructure of rapid pyrolysis char on its gasification reactivity[J]. J Fuel Chem Technol, 2012, 40(6): 648-654.)

    24. [24]

      [24] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, POSCHL U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742.

    25. [25]

      [25] SHENG C D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity[J]. Fuel, 2007, 86(15): 2316-2324.

    26. [26]

      [26] LI X, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.

    27. [27]

      [27] LI T, ZHANG L, DONG L, LI C Z. Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal[J]. Fuel, 2014, 117: 1190-1195.

    28. [28]

      [28] JONES S P, FAIN C C, EDIE D D. Structural development in mesophase pitch based carbon fibers produced from naphthalene[J]. Carbon, 1997, 35(10/11): 1533-1543.

    29. [29]

      [29] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. J Chem Phy, 1970, 53(3): 1126-1130.

    30. [30]

      [30] IVLEVA N P, MESSERER A, YANG X, NIESSNER R, POSCHL U. Raman microspectroscopic analysis of changes in the chemical structure and reactivity of soot in a diesel exhaust after treatment model system[J]. Environ Sci Technol, 2007, 41(10): 3702-3707.

    31. [31]

      [31] JAWHARI T, ROID A, CASADO J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon, 1995, 33(11): 1561-1565.

    32. [32]

      [32] ISHIMARU K, HATA T, BRONSVELD P, NISHIZAWA K, IMAMURA Y. Characterization of sp2- and sp3-bonded carbon in wood charcoal[J]. J Wood Sci, 2007, 53(5): 442-448.

    33. [33]

      [33] SILÜA L F O, SAMPAIO C H, GUEDES A, FDEZ-ORTIZ DE VALLEJUELO S, MADARIAGA J M. Multianalytical approaches to the characterisation of minerals associated with coals and the diagnosis of their potential risk by using combined instrumental microspectroscopic techniques and thermodynamic speciation[J]. Fuel, 2012, 94: 52-63.

    34. [34]

      [34] 尹艳山, 王泽忠, 田红, 张巍, 何金桥, 刘亮, 鄢晓忠. 木质纤维类生活垃圾热解过程矿物质和碳结构的演化规律[J]. 燃料化学学报, 2015, 43(2): 160-166. (YIN Yan-shan, WANG Ze-zhong, TIAN Hong, ZHANG Wei, HE Jin-qiao, LIU Liang, YAN Xiao-zhong. Evolution of mineral matter and carbonaceous structure during lignocellulosic municipal solid waste pyrolysis[J]. J Fuel Chem Technol, 2015, 43(2): 160-166.)

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    5. [5]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    10. [10]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    11. [11]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    12. [12]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    13. [13]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    16. [16]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    17. [17]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    18. [18]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(0)
  • Abstract views(591)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return