Citation: LU Nan, WU Zhi-wei, LEI Li-jun, QIN Zhang-feng, ZHU Hua-qing, LUO Li, FAN Wei-bin, WANG Jian-guo. Catalytic combustion of lean methane over a core-shell structured Pd-Co3O4@SiO2 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(9): 1120-1127. shu

Catalytic combustion of lean methane over a core-shell structured Pd-Co3O4@SiO2 catalyst

  • Corresponding author: WU Zhi-wei,  QIN Zhang-feng, 
  • Received Date: 9 March 2015
    Available Online: 18 May 2015

    Fund Project: 国家自然科学基金(21227002) (21227002) 中国科学院战略性先导科技专项(XDA07060300) (XDA07060300) 山西省科技攻关项目(MQ2014-11, MQ2014-11) (MQ2014-11, MQ2014-11) 山西省自然科学基金(2012021005-3)。 (2012021005-3)

  • A core-shell structured Pd-Co3O4@SiO2 catalyst was prepared by a simple self-assemble method and used in lean methane combustion. The results of catalytic tests indicate that the core-shell Pd-Co3O4@SiO2 catalyst exhibits high activity in lean methane combustion and superior stability at high temperature. The results of TEM, XRD, and H2-TPR characterization suggest that the high activity of Pd-Co3O4@SiO2 is mainly ascribed to the strong interaction between CoOx and PdO species inside the SiO2 shell. Meanwhile, as the active Pd and CoOx species in Pd-Co3O4@SiO2 are enshielded in the core-shell structure, which is effective to protect the active phase from sintering at high temperature, the core-shell structured Pd-Co3O4@SiO2 catalyst is thus far superior in thermal stability against high temperature to the supported Pd/Co3O4@SiO2 and Pd/Co3O4-SiO2 catalysts.
  • 加载中
    1. [1]

      [1] WANG B, QIN Z F, WANG G F, WU Z W, FAN W B, ZHU H Q, LI S N, ZHANG Y G, LI Z K, WANG J G. Catalytic combustion of lean methane at low temperature over palladium on a CoOx-SiO2 composite support[J]. Catal Lett, 2013, 143(5): 411-417.

    2. [2]

      [2] 王珂, 林志娇, 江志东. 甲烷催化燃烧整体型催化剂研究进展[J]. 天然气化工, 2009, 34(1): 71-78. (WANG Ke, LIN Zhi-jiao, JIANG Zhi-dong. Progress in monolithic catalysts for catalytic combustion of methane[J]. Nat Gas Chem Ind, 2009, 34(1): 71-78.)

    3. [3]

      [3] 王胜, 高典楠, 张纯希, 袁中山, 张朋, 王树东. 贵金属甲烷燃烧催化剂[J]. 化学进展, 2008, 20(6): 789-797. (WANG Sheng, GAO Dian-nan, ZHANG Chun-xi, YUAN Zhong-shan, ZHANG peng, WANG Shu-dong. Low-temperature catalytic combustion of methane over noble metal catalyst[J]. Prog Chem, 2008, 20(6): 789-797.)

    4. [4]

      [4] LYUBOVSKY M, SMITH L L, CASTALDI M, KARIM H, NENTWICK B, ETEMAD S, LAPUERRE R, PFEFFERLE W C. Catalytic combustion over platinum group catalysts: Fuel-lean versus fuel-rich operation[J]. Catal Today, 2003, 83(1/4): 71-84.

    5. [5]

      [5] 邓积光, 刘雨溪, 张磊, 戴洪兴. 天然气催化燃烧催化剂的研究进展(上)[J]. 石油化工, 2013, 42(1): 1-7. (DENG Ji-guang, LIU Yu-xi, ZHANG Lei, DAI Hong-xing. Advancements in catalysts for catalytic combustion of natural gas[J]. Petrochem Technol, 2013, 42(1): 1-7.)

    6. [6]

      [6] THEVENIN P O, ALCALDE A, PETTERSSON L J, JARAS S G, FIERRO J. Catalytic combustion of methane over cerium-doped palladium catalysts[J]. J Catal, 2003, 215(1): 78-86.

    7. [7]

      [7] DEMOULIN O, CLEF B L, NAVEZ M, RUIZ P. Combustion of methane, ethane and propane and of mixtures of methane with ethane or propane on Pd/γ-Al2O3 catalysts[J]. Appl Catal A: Gen, 2008, 344(1/2): 1-9.

    8. [8]

      [8] PECCHI G, REYES P, CONCHA I, FIERRO J. Methane combustion on Pd/SiO2 sol gel catalysts[J]. J Catal, 1998, 179(1): 309-314.

    9. [9]

      [9] GUO X N, ZHI G J, YAN X Y, JIN G Q, GUO X Y, BRAULT P. Methane combustion over Pd/ZrO2/SiC, Pd/CeO2/SiC, and Pd/Zr0.5Ce0.5O2/SiC catalysts[J]. Catal Commun, 2011, 12(10): 870-874.

    10. [10]

      [10] HU L H, PENG Q, LI Y D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion[J]. J Am Chem Soc, 2008, 130(48): 16136-16237.

    11. [11]

      [11] KRAIKUL N, JITKARNKA S, LUENGNARUEMITCHAI A. Catalytic methane combustion on Pd-Pt-La catalysts and their surface models[J]. Appl Catal B: Environ, 2005, 58(1/2): 143-152.

    12. [12]

      [12] PERSSON K, ERSSON A, JANSSON K, IVERLUND N, JARAS S. Influence of co-metal on bimetallic palladium catalysts for methane combustion[J]. J Catal, 2005, 231(1): 139-150.

    13. [13]

      [13] CARGNELLO M, JAEN J J D, GARRIDO J C H, BAKHMUTSKY K, MONTINI T, GAMEZ J J C, GORTE R J, FORNASIERO P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3[J]. Science, 2012, 337(6095): 713-717.

    14. [14]

      [14] FERRER V, FINOL D, RADRIGUEZ D, DOMINGUEZ F, SOLANO R, ZARRAGA J, SANCHEZ J. Chemical characterization and catalytic activity of Pd-supported catalysts on Pd/Ce0.39Zr0.61Ox/SiO2[J]. Catal Lett, 2009, 132(1/2): 292-298.

    15. [15]

      [15] FARRAUTO R J, HOBSON M C, KENNELLY T, WATERMAN E M. Catalytic chemistry of supported palladium for combustion of methane[J]. Appl Catal A: Gen, 1992, 81(2): 227-237.

    16. [16]

      [16] ZENG B, HOU B, JIA L T, WANG J G, CHEN C B, LI D B, SUN Y H. The intrinsic effects of shell thickness on the Fischer-Tropsch synthesis over core-shell structured catalysts[J]. Catal Sci Technol, 2013, 3(12): 3250-3255.

    17. [17]

      [17] ZAVYALOVA U, SCHOLZ P, ONDRUSCHKA B. Influence of cobalt precursor and fuels on the performance of combustion synthesized Co3O4/γ-Al2O3 catalysts for total oxidation of methane[J]. Appl Catal A: Gen, 2007, 323: 226-233.

    18. [18]

      [18] LIN W, LIN L, ZHU Y X, XIE Y C, SCHEURELL K, KERNNITZ E. Novel Pd/TiO2-ZrO2 catalysts for methane total oxidation at low temperature and their 18O-isotope exchange behavior[J]. J Mol Catal A, 2005, 226(2): 263-268.

  • 加载中
    1. [1]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    2. [2]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    13. [13]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    14. [14]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    18. [18]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(0)
  • Abstract views(534)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return