Citation:
LIU Guo-yang, ZHOU An-ning, ZHANG Ya-ting, CAI Jiang-tao, DANG Yong-qiang, QIU Jie-shan. Analysis of the reaction process in solid oxide direct carbon fuel cell anode[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(9): 1100-1105.
-
A direct carbon fuel cell (DCFC) was assembled with yttria stabilized zirconia (YSZ) as electrolyte and active carbon (AC), graphite (G) and semi-coke (SC) were employed as the DCFC fuels. The influences of the carbon fuel pore structure and reactivity, operation temperature, anode atmosphere on the anode reaction were investigated. The results indicated that for three carbonaceous fuels, the performance of DCFC is in the order of AC > SC > G, the same as that for their oxidation reactivity in air or CO2 atmosphere. The reactivity of carbonaceous fuels is determined by their surface oxygenic functional groups and pore structure. Moreover, the results revealed that the DCFC anodic reactions involves the oxidation of C to CO2, the conversion of CO2 to CO via the reverse Boudouard reaction, and the oxidation of CO to CO2.
-
-
-
[1]
[1] DE BRUIJIN F. The current status of fuel cell technology for mobile and stationary applications[J]. Green Chem, 2005, 7: 132-150.
-
[2]
[2] CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. J Power Sources, 2007, 167(2): 250-257.
-
[3]
[3] ADAM C R, SARBJIT G, SUKHVINDER P S B, BRADLEY P L, SANKAR B. Review of fuels for direct carbon fuel cells[J]. Energy Fuels, 2012, 26: 1471-1488.
-
[4]
[4] GIDDEY S, BADWAL S P S, KULKARNI A, MUNNINGS C. A comprehensive review of direct carbon fuel cell technology[J]. Prog Energy Combust Sci, 2012, 38(3): 360-399.
-
[5]
[5] WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334: 935-939.
-
[6]
[6] TSUCHIYA M, LAI B K, RAMANATHAN S. Scalable nanostructured membranes for solid-oxide fuel cells[J]. Nat nanotechnol, 2011, 6: 282-286.
-
[7]
[7] ELLEUCH A, YU J S, BOUSSETTA A, HALOUANI K, LI Y D. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte[J]. Int J Hydrogen Energy, 2013, 38(20): 8514-8523.
-
[8]
[8] FAN L D, WANG C Y, ZHU B. Low temperature ceramic fuel cells using all nano composite materials[J]. Nano Energy, 2012, 1(4): 631-639.
-
[9]
[9] ZHU B, RAZA R, QIN H Y, FAN L D. Single-component and three-component fuel cells[J]. J Power Sources, 2011, 196(15): 6362-6365.
-
[10]
[10] LIU R Z, ZHAO C H, LI J L, ZENG F R, WANG S R, WEN T L, WEN Z Y. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 480-482.
-
[11]
[11] LI S W, LEE A C, MITCHELL R E, GVR T M. Direct carbon conversion in a helium fluidized bed fuel cell[J]. Solid State Ionics, 2008, 179(27/32): 1549-1552.
-
[12]
[12] LI C, SHI Y X, CAI N S. Effect of contact type between anode and carbonaceous fuels on direct carbon fuel cell reaction characteristics[J]. J Power Sources, 2011, 196(10): 4588-4593.
-
[13]
[13] NVRNBERGER S, BUAR R, DESCLAUX P, FRANKE B, RZEPKA M, STIMMING U. Direct carbon conversion in a SOFC-system with a non-porous anode[J]. Energy Environ Sci, 2010, 3: 150-153.
-
[14]
[14] WU Y Z, SU C, ZHANG C M, RAN R, SHAO Z P. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochem Commun, 2009, 11(6): 1265-1268.
-
[15]
[15] CHEN M M, WANG C Y, NIU X M, ZHAO S, TANG J, ZHU B. Carbon anode in direct carbon fuel cell[J]. Int J Hydrogen Energy, 2010, 35(7): 2732-2736.
-
[16]
[16] DUDEK M, TOMCZYK P. Composite fuel for direct carbon fuel cell[J]. Catal Today, 2011, 176(1): 388- 392.
-
[17]
[17] ELLEUCH A, BOUSSETTA A, HALOUANI K. Analytical modeling of electrochemical mechanisms in CO2 and CO/CO2 producing direct carbon fuel cell[J]. J Electroanal Chem, 2012, 668: 99-106.
-
[18]
[18] WU J F, YUAN X Z, WANG H J, BLANCOA M, MARTIN J J, ZHANG J J. Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques[J]. Int J Hydrogen Energy, 2008, 33(6): 1735-1746.
-
[19]
[19] SUNDMACHER K, SCHULTZB T, ZHOU S, SCOTT K, GINKEL M, GILLES E D. Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis[J]. Chem Eng Sci, 2001, 56(2): 333-341.
-
[20]
[20] KULKARNI A, GIDDEY S, BADWAL S P S. Electrochemical performance of ceria-gadolinia electrolyte based direct carbon fuel cells[J]. Solid State Ionics, 2011, 194(1): 46-52.
-
[21]
[21] TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. Int J Hydrogen Energy, 2010, 35(20): 11188-11193.
-
[1]
-
-
-
[1]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009
-
[2]
Jianjun LI , Mingjie REN , Lili ZHANG , Lingling ZENG , Huiling WANG , Xiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187
-
[3]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[4]
Qing Xue , Shengyi Li , Yanan Zhao , Peng Sheng , Li Xu , Zhengxi Li , Bo Zhang , Hui Li , Bo Wang , Libin Yang , Yuliang Cao , Zhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041
-
[5]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[6]
Yi ZHANG , Guang LI , Wenxuan FAN , Qingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445
-
[7]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[8]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[9]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[10]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[11]
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
-
[12]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[13]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[14]
Zhonghan Xu , Yuejia Li , Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075
-
[15]
Zixuan Zhao , Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040
-
[16]
Wuxin Bai , Qianqian Zhou , Zhenjie Lu , Ye Song , Yongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041
-
[17]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[18]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[19]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[20]
Yan'e LIU , Shengli JIA , Yifan JIANG , Qinghua ZHAO , Yi LI , Xinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(406)
- HTML views(12)