Citation:
Amr El-Hag Ali, Ola M. Gomaa, Reham Fathey, Hussein Abd El Kareem, Mohamed Abou Zaid. Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(9): 1092-1099.
-
Microbial fuel cells (MFCs) represent a new approach for treating waste water along with electricity production. The present study addressed electricity production from domestic wastewater using a mediator-less double chamber MFC. The electricity production was monitored under different operational conditions for both summer and winter samples. Optimization of the anodic and cathodic chambers resulted in a maximal current of 0.784 and 0.645 mA with the maximal power intensity of 209 and 117 mW/m2 in power duration of 24 h for the summer and winter samples, respectively. Scanning electron microscopy showed that the bacterial biofilm formation on the anode was denser for the summer sample than that when the winter sample was used, so was the total bacterial count. Therefore, samples taken during summer were considered better in electricity production and waste water treatment than those taken during winter basically because of the high microbial load during the hot season. In parallel, there was a decrease in both biological oxygen demand (BOD5) and chemical oxygen demand (COD) values which reached 71.8% and 72.85%, respectively at the end of the operation process for the summer sample, while there was no evident decrease for the winter sample. Optimizing the operating conditions not only increased the potential of using domestic waste water in microbial fuel cells to produce electricity, but also improved the quality of the domestic waste water.
-
-
-
[1]
[1] OH S, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environ Sci Technol 2004, 38: 4900-4904.
-
[2]
[2] ZHOU X, QU Y, KIM B H, ChOO P Y, LIU J, DU Y, HE W, CHANG I S, REN N, FEN N. Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells[J]. Bioresour Technol, 2014, 169: 265-270.
-
[3]
[3] LAROSSA-GUERRERO A, SCOTT K, HEAD I M, MTEO F, GINTESA A, GODINEZ C. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12): 3985-3994.
-
[4]
[4] FENG Y, WANG X, LOGAN B E, LEE H. Brewery wastewater treatment using air-cathode microbial fuel cells[J]. Appl Microbiol Biotechnol, 2008, 78: 873-880.
-
[5]
[5] KIM B H, PARK H S, KIM H J, KIM G T, CHANG I S, LEE J, PHUNG NI. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Appl Microbiol Biotechnol, 2004, 63(6): 672-681.
-
[6]
[6] PANT D, VAN B G, DIELS L, VANBROEKHOVEN K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresour Technol, 2010, 101: 1533-1543.
-
[7]
[7] AHN Y, LOGAN B E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures[J]. Bioresour Technol, 2010, 101: 469-475.
-
[8]
[8] BARANITHARAN E, KHAN M R, YOUSUF A, TEO W F A, TAN G Y A, CHENG C K. Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell[J]. Fuel, 2015, 143: 72-79.
-
[9]
[9] GREENMAN J, GALVEZ A, GIUSTI L, IEROPOULOS I. Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter[J]. Enzyme Microb Technol, 2009, 44(2): 112-119.
-
[10]
[10] ADELAJA O, KESHAVARZ T, KYAZZE G. Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell[J]. Eng Life Sci, 2014, 14(2): 218-228.
-
[11]
[11] El-HAG ALI A, ABD El-AAl A. Conductive thin film formation onto radiation grafted polymeric surfaces using electroless plating technique[J]. Polym Adv Technol, 2009, 20(9): 729-735.
-
[12]
[12] El-HAG ALI A, MOSTAFA T B, RAAFAT A I. Chemical modification-induced improvement in the electrical characteristics of radiation-functionalized polypropylene sheets[J]. Polym Int, 2010, 59(4): 557-5561.
-
[13]
[13] ZHONG S L, CUI X J, GAO Y S, LIU W C, DOU S. Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications[J]. Int J Hydrogn Energy, 2014, 39(31): 17857-17864.
-
[14]
[14] ZHANG Z X, CHATTOT R, BONORAND L, JETSRISUPARB K, BUCHMULLER Y, WOKAUN A, GUBLER L. Mass spectrometry to quantify and compare the gas barrier properties of radiation grafted membranes and nafion[J]. J Memb Sci, 2014, 472: 55-66.
-
[15]
[15] LIN Y, HO H. Investigations on the drug releasing mechanism from an asymmetric membrane-coated capsule with an in situ formed delivery orifice[J]. J Control Rel, 2003, 89(1): 57-69.
-
[16]
[16] [JP5]YOUNG J C, BAUMANN E R. The electrolytic respirometer—II Use in water pollution control plant laboratories[J]. Water Res, 1976, 10(12): 1141-1149.
-
[17]
[17] Materials ASfTa. Annual Book of Standards. Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water[M]. Philadephia, Pa.1995.
-
[18]
[18] EATON A D, LS C, AE G. Standard methods for the examination of water and wastewater. In: American Public Health Association AWA, editor. 19th edition ed: Water Environment Federation[M]. 2005.
-
[19]
[19] American Water Works Association WEF. APHA. Standard Methods for the Examination of Water and Wastewater[M]. 1999.
-
[20]
[20] [JP3]ALONSO-FAGUNDEZ N, LASERNA V, ALBA-RUBIO AC, MENGIBAR M, HERAS A, MARISCAL R, LOPEZ GRANDOS M. Poly-(styrene sulphonic acid): An acid catalyst from polystyrene waste for reactions of interest in biomass valorization[J]. Catal Today, 2014, 234: 285-294.
-
[21]
[21] ABD EL-REHIM H A, HEGAZY E A, EL-HAG ALI A. Selective removal of some heavy metal ions from aqueous solution using treated polyethylene-g-styrene/maleic anhydride membranes[J]. React Func Polym, 2000, 43(1/2): 105-116.
-
[22]
[22] LIU G, YATES M D, CHENG S, CALL D F, SUN D, LOGAN B E. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments[J]. Bioresour Technol, 2011, 102(15): 7301-7306.
-
[23]
[23] [JP3]RABAEY K, VERSTRAETE W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends Biotechnol, 2005, 23(6): 291-298.
-
[24]
[24] IEROPOULOS I A, GREENMAN J, MELHUISH C, HART J. Comparative study of three types of microbial fuel cell[J]. Enzyme Microb Technol, 2005, 37(2): 238-245.
-
[25]
[25] RAGHAVULU S V, MOHAN S V, GOUD R K, SARMA P N. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes[J]. Electrochem Comm, 2009, 11(2): 371-375.
-
[26]
[26] TSUCHIYA M F. Ion transport in prokaryotes[B]. San Diego: Academic Press, Inc.; 1987.
-
[27]
[27] WEI L, HAN H, SHEN J. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell[J]. Int J Hydrogen Energy, 2012, 37(17): 12980-12986.
-
[28]
[28] RABAEY K, BOON N, SICILIANO S D, VERHAEGE M, VERSTRAETE W. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbiol, 2004, 70(9): 5373-82.
-
[29]
[29] LUO H, LIU G, ZHANG R, JIN S. Phenol degradation in microbial fuel cells[J]. Chem Eng J, 2009, 147(2/3): 259-264.
-
[30]
[30] LOGAN B E, MURANO C, SCOTT K, GRAY N D, HEAD I M. Electricity generation from cysteine in a microbial fuel cell[J]. Water Res, 2005, 39(5): 942-52.
-
[31]
[31] XIAO B, YANG F, LIU J. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell[J]. J Hazard Mater, 2013, 254-255: 57-63.
-
[32]
[32] YOU S, ZHAO Q, ZHANG J, JIANG J, ZHAO S. A microbial fuel cell using permanganate as the cathodic electron acceptor[J]. J Power Sources, 2006, 162(2): 1409-1415.
-
[1]
-
-
-
[1]
Shilong Li , Liang Duan , Qiusheng Gao , Hengliang Zhang . Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110997-. doi: 10.1016/j.cclet.2025.110997
-
[2]
Jun Luo , Yanya Liu , Jianghuaxiong Zhu , Chengxiong Wang , Yunkun Zhao , Dong Yan , Jian Li , Lichao Jia . A proton-conducting solid oxide fuel cell for co-production of ethylene and power via ethane conversion. Chinese Chemical Letters, 2025, 36(7): 110171-. doi: 10.1016/j.cclet.2024.110171
-
[3]
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
-
[4]
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
-
[5]
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
-
[6]
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
-
[7]
Bo-Ran Chang , Lin Deng , Qing-Lian Wu , Wan-Qian Guo , Hui-Ying Xue . A review: Carbon-based materials as effective additives in anaerobic fermentation, focusing on microbial chain elongation and medium chain fatty acids production. Chinese Chemical Letters, 2025, 36(7): 110411-. doi: 10.1016/j.cclet.2024.110411
-
[8]
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
-
[9]
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
-
[10]
Jisheng Liu , Junli Chen , Xifeng Zhang , Yin Wu , Xin Qi , Jie Wang , Xiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779
-
[11]
Dan Shao , Yujing Lyu , Chengyuan Liu , Hao Wang , Ning Ma , Hao Xu , Wei Yan , Xiaohua Jia , Haojie Song . Attracting magnetic BDD particles onto Ti/RuO2-IrO2 by using a magnet: A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110641-. doi: 10.1016/j.cclet.2024.110641
-
[12]
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
-
[13]
Rong-Nan Yi , Wei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194
-
[14]
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
-
[15]
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
-
[16]
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
-
[17]
Feng Cui , Fangman Chen , Xiaochun Xie , Chenyang Guo , Kai Xiao , Ziping Wu , Yinglu Chen , Junna Lu , Feixia Ruan , Chuanxu Cheng , Chao Yang , Dan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681
-
[18]
Yuehai Zhi , Chen Gu , Huachao Ji , Kang Chen , Wenqi Gao , Jianmei Chen , Dafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234
-
[19]
Ping Liu , Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465
-
[20]
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(294)
- HTML views(19)