Citation: Amr El-Hag Ali, Ola M. Gomaa, Reham Fathey, Hussein Abd El Kareem, Mohamed Abou Zaid. Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(9): 1092-1099. shu

Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production

  • Received Date: 23 February 2015
    Available Online: 20 June 2015

  • Microbial fuel cells (MFCs) represent a new approach for treating waste water along with electricity production. The present study addressed electricity production from domestic wastewater using a mediator-less double chamber MFC. The electricity production was monitored under different operational conditions for both summer and winter samples. Optimization of the anodic and cathodic chambers resulted in a maximal current of 0.784 and 0.645 mA with the maximal power intensity of 209 and 117 mW/m2 in power duration of 24 h for the summer and winter samples, respectively. Scanning electron microscopy showed that the bacterial biofilm formation on the anode was denser for the summer sample than that when the winter sample was used, so was the total bacterial count. Therefore, samples taken during summer were considered better in electricity production and waste water treatment than those taken during winter basically because of the high microbial load during the hot season. In parallel, there was a decrease in both biological oxygen demand (BOD5) and chemical oxygen demand (COD) values which reached 71.8% and 72.85%, respectively at the end of the operation process for the summer sample, while there was no evident decrease for the winter sample. Optimizing the operating conditions not only increased the potential of using domestic waste water in microbial fuel cells to produce electricity, but also improved the quality of the domestic waste water.
  • 加载中
    1. [1]

      [1] OH S, MIN B, LOGAN B E. Cathode performance as a factor in electricity generation in microbial fuel cells[J]. Environ Sci Technol 2004, 38: 4900-4904.

    2. [2]

      [2] ZHOU X, QU Y, KIM B H, ChOO P Y, LIU J, DU Y, HE W, CHANG I S, REN N, FEN N. Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells[J]. Bioresour Technol, 2014, 169: 265-270.

    3. [3]

      [3] LAROSSA-GUERRERO A, SCOTT K, HEAD I M, MTEO F, GINTESA A, GODINEZ C. Effect of temperature on the performance of microbial fuel cells[J]. Fuel, 2010, 89(12): 3985-3994.

    4. [4]

      [4] FENG Y, WANG X, LOGAN B E, LEE H. Brewery wastewater treatment using air-cathode microbial fuel cells[J]. Appl Microbiol Biotechnol, 2008, 78: 873-880.

    5. [5]

      [5] KIM B H, PARK H S, KIM H J, KIM G T, CHANG I S, LEE J, PHUNG NI. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell[J]. Appl Microbiol Biotechnol, 2004, 63(6): 672-681.

    6. [6]

      [6] PANT D, VAN B G, DIELS L, VANBROEKHOVEN K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production[J]. Bioresour Technol, 2010, 101: 1533-1543.

    7. [7]

      [7] AHN Y, LOGAN B E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures[J]. Bioresour Technol, 2010, 101: 469-475.

    8. [8]

      [8] BARANITHARAN E, KHAN M R, YOUSUF A, TEO W F A, TAN G Y A, CHENG C K. Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell[J]. Fuel, 2015, 143: 72-79.

    9. [9]

      [9] GREENMAN J, GALVEZ A, GIUSTI L, IEROPOULOS I. Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter[J]. Enzyme Microb Technol, 2009, 44(2): 112-119.

    10. [10]

      [10] ADELAJA O, KESHAVARZ T, KYAZZE G. Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell[J]. Eng Life Sci, 2014, 14(2): 218-228.

    11. [11]

      [11] El-HAG ALI A, ABD El-AAl A. Conductive thin film formation onto radiation grafted polymeric surfaces using electroless plating technique[J]. Polym Adv Technol, 2009, 20(9): 729-735.

    12. [12]

      [12] El-HAG ALI A, MOSTAFA T B, RAAFAT A I. Chemical modification-induced improvement in the electrical characteristics of radiation-functionalized polypropylene sheets[J]. Polym Int, 2010, 59(4): 557-5561.

    13. [13]

      [13] ZHONG S L, CUI X J, GAO Y S, LIU W C, DOU S. Fabrication and properties of poly(vinyl alcohol)-based polymer electrolyte membranes for direct methanol fuel cell applications[J]. Int J Hydrogn Energy, 2014, 39(31): 17857-17864.

    14. [14]

      [14] ZHANG Z X, CHATTOT R, BONORAND L, JETSRISUPARB K, BUCHMULLER Y, WOKAUN A, GUBLER L. Mass spectrometry to quantify and compare the gas barrier properties of radiation grafted membranes and nafion[J]. J Memb Sci, 2014, 472: 55-66.

    15. [15]

      [15] LIN Y, HO H. Investigations on the drug releasing mechanism from an asymmetric membrane-coated capsule with an in situ formed delivery orifice[J]. J Control Rel, 2003, 89(1): 57-69.

    16. [16]

      [16] [JP5]YOUNG J C, BAUMANN E R. The electrolytic respirometer—II Use in water pollution control plant laboratories[J]. Water Res, 1976, 10(12): 1141-1149.

    17. [17]

      [17] Materials ASfTa. Annual Book of Standards. Standard test methods for chemical oxygen demand (dichromate oxygen demand) of water[M]. Philadephia, Pa.1995.

    18. [18]

      [18] EATON A D, LS C, AE G. Standard methods for the examination of water and wastewater. In: American Public Health Association AWA, editor. 19th edition ed: Water Environment Federation[M]. 2005.

    19. [19]

      [19] American Water Works Association WEF. APHA. Standard Methods for the Examination of Water and Wastewater[M]. 1999.

    20. [20]

      [20] [JP3]ALONSO-FAGUNDEZ N, LASERNA V, ALBA-RUBIO AC, MENGIBAR M, HERAS A, MARISCAL R, LOPEZ GRANDOS M. Poly-(styrene sulphonic acid): An acid catalyst from polystyrene waste for reactions of interest in biomass valorization[J]. Catal Today, 2014, 234: 285-294.

    21. [21]

      [21] ABD EL-REHIM H A, HEGAZY E A, EL-HAG ALI A. Selective removal of some heavy metal ions from aqueous solution using treated polyethylene-g-styrene/maleic anhydride membranes[J]. React Func Polym, 2000, 43(1/2): 105-116.

    22. [22]

      [22] LIU G, YATES M D, CHENG S, CALL D F, SUN D, LOGAN B E. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments[J]. Bioresour Technol, 2011, 102(15): 7301-7306.

    23. [23]

      [23] [JP3]RABAEY K, VERSTRAETE W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends Biotechnol, 2005, 23(6): 291-298.

    24. [24]

      [24] IEROPOULOS I A, GREENMAN J, MELHUISH C, HART J. Comparative study of three types of microbial fuel cell[J]. Enzyme Microb Technol, 2005, 37(2): 238-245.

    25. [25]

      [25] RAGHAVULU S V, MOHAN S V, GOUD R K, SARMA P N. Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes[J]. Electrochem Comm, 2009, 11(2): 371-375.

    26. [26]

      [26] TSUCHIYA M F. Ion transport in prokaryotes[B]. San Diego: Academic Press, Inc.; 1987.

    27. [27]

      [27] WEI L, HAN H, SHEN J. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell[J]. Int J Hydrogen Energy, 2012, 37(17): 12980-12986.

    28. [28]

      [28] RABAEY K, BOON N, SICILIANO S D, VERHAEGE M, VERSTRAETE W. Biofuel cells select for microbial consortia that self-mediate electron transfer[J]. Appl Environ Microbiol, 2004, 70(9): 5373-82.

    29. [29]

      [29] LUO H, LIU G, ZHANG R, JIN S. Phenol degradation in microbial fuel cells[J]. Chem Eng J, 2009, 147(2/3): 259-264.

    30. [30]

      [30] LOGAN B E, MURANO C, SCOTT K, GRAY N D, HEAD I M. Electricity generation from cysteine in a microbial fuel cell[J]. Water Res, 2005, 39(5): 942-52.

    31. [31]

      [31] XIAO B, YANG F, LIU J. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell[J]. J Hazard Mater, 2013, 254-255: 57-63.

    32. [32]

      [32] YOU S, ZHAO Q, ZHANG J, JIANG J, ZHAO S. A microbial fuel cell using permanganate as the cathodic electron acceptor[J]. J Power Sources, 2006, 162(2): 1409-1415.

  • 加载中
    1. [1]

      Shilong LiLiang DuanQiusheng GaoHengliang Zhang . Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110997-. doi: 10.1016/j.cclet.2025.110997

    2. [2]

      Jun LuoYanya LiuJianghuaxiong ZhuChengxiong WangYunkun ZhaoDong YanJian LiLichao Jia . A proton-conducting solid oxide fuel cell for co-production of ethylene and power via ethane conversion. Chinese Chemical Letters, 2025, 36(7): 110171-. doi: 10.1016/j.cclet.2024.110171

    3. [3]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    4. [4]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    5. [5]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    6. [6]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    7. [7]

      Bo-Ran ChangLin DengQing-Lian WuWan-Qian GuoHui-Ying Xue . A review: Carbon-based materials as effective additives in anaerobic fermentation, focusing on microbial chain elongation and medium chain fatty acids production. Chinese Chemical Letters, 2025, 36(7): 110411-. doi: 10.1016/j.cclet.2024.110411

    8. [8]

      Yulong LiuHaoran LuTong YangPeng ChengXu HanWenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492

    9. [9]

      Zheyi LiXiaoyang LiangZitong QiuZimeng LiuSiyu WangYue ZhouNan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592

    10. [10]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    11. [11]

      Dan ShaoYujing LyuChengyuan LiuHao WangNing MaHao XuWei YanXiaohua JiaHaojie Song . Attracting magnetic BDD particles onto Ti/RuO2-IrO2 by using a magnet: A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110641-. doi: 10.1016/j.cclet.2024.110641

    12. [12]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    13. [13]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    14. [14]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    15. [15]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    16. [16]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    17. [17]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    18. [18]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    19. [19]

      Ping Liu Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465

    20. [20]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

Metrics
  • PDF Downloads(0)
  • Abstract views(295)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return