Citation: WANG Yong-zhao, FAN Li-yuan, WU Rui-fang, SHI Jing, LI Xiao, ZHAO Yong-xiang. Effect of ammonia concentration on the catalytic activity of Pd-Cu supported on attapulgite clay prepared by ammonia evaporation in CO oxidation at room temperature[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(9): 1076-1082. shu

Effect of ammonia concentration on the catalytic activity of Pd-Cu supported on attapulgite clay prepared by ammonia evaporation in CO oxidation at room temperature

  • Corresponding author: WANG Yong-zhao,  ZHAO Yong-xiang, 
  • Received Date: 15 February 2015
    Available Online: 1 June 2015

    Fund Project: 国家自然科学基金(21073114) (21073114) 国际合作项目(2013DFA40460) (2013DFA40460) 山西省科技创新重点团队项目(2012021007)。 (2012021007)

  • With attapulgite clay (APT) as support, the Pd-Cu/APT catalysts were prepared by an ammonia evaporation method and characterized by N2-physisorption, XRD, FT-IR, TEM and H2-TPR. The effect of ammonia concentration on the catalytic performance of Pd-Cu/APT in CO oxidation at room temperature was investigated in a fixed-bed continuous flow microreactor. The results showed that CuO appears as the main Cu species in the Pd-Cu/APT catalysts prepared with over low or over high ammonia concentration, whereas the quantity of Cu2(OH)3Cl phase is much less. However, a proper concentration of ammonia is of benefits to forming stable Cu2(OH)3Cl species in Pd-Cu/APT; owing to its high dispersion, nano-platelet morphology and strong interaction with Pd species, the presence of stable Cu2(OH)3Cl can significantly promote the catalytic performance of Pd-Cu/APT in CO oxidation. Under a gas hourly space velocity (GHSV) of 6 000 h-1 for a feed stream containing 1.5% CO and 3.3% water, the Pd-Cu/APT catalyst exhibits excellent activity and stability in CO oxidation even at room temperature.
  • 加载中
    1. [1]

      [1] 徐慧远, 罗靖洁, 严春蓉, 张燕, 尚书勇. 二氧化硅孔结构对CO氧化用担载型纳米金催化剂的影响[J]. 燃料化学学报, 2012, 40(11): 1397-1402. (XU Hui-yuan, LUO Jing-jie, YAN Chun-rong, ZHANG Yan, SHANG Shu-yong. Impact of silica porosity on the catalytic activity of nanosize gold catalyst for CO oxidation[J]. J Fuel Chem Technol, 2012, 40(11): 1397-1402.)

    2. [2]

      [2] ZHU H Q, QIN Z F, SHAN W J, SHEN W J, WANG J G. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments[J]. J Catal, 2005, 233(1): 41-50.

    3. [3]

      [3] QI C X, SU H J, GUAN R G, XU X F. An investigation into phosphate-doped Au/alumina for low temperature CO oxidation[J]. J Phys Chem, 2012, 116(33): 17492-17500.

    4. [4]

      [4] LI L, WANG A Q, QIAO B T, LIN J, HUANG Y Q, WANG X D, ZHANG T. Origin of the high activity of Au/FeOx for low-temperature CO oxidation: Direct evidence for a redox mechanism[J]. J Catal, 2013, 299: 90-100.

    5. [5]

      [5] ATSUSHI S, KAORU O, MASATOSHI Y, JUNYA O, KENICHI S. Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts[J]. Appl Catal B: Environ, 2013, 132-133: 511-518.

    6. [6]

      [6] XIE X W, LI Y, LIU Z Q, HARUTA M, SHEN W J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458: 746-749.

    7. [7]

      [7] CHRISTOPHER J, STUART H T, ANDREW B, MANDY J C, CHRISTOPHER J K, GRAHAM J H. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation[J]. Chem Commun, 2008, 14: 1707-1709.

    8. [8]

      [8] WANG Y Z, ZHAO Y X, GAO C G, LIU D S. Origin of the high activity and stability of Co3O4 in low-temperature CO oxidation[J]. Catal Lett, 2008, 125(1/2): 134-138.

    9. [9]

      [9] LUO M F, MA J M, LU J Q, SONG Y P, WANG Y J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation[J]. J Catal, 2007, 246(1): 52-59.

    10. [10]

      [10] 邵建军, 朱锡, 张永坤, 王明贵. Co3O4/CeO2 CO氧化的原位红外光谱研究[J]. 燃料化学学报, 2012, 40(2): 229-234. (SHAO Jian-jun, ZHU Xi, ZHANG Yong-kun, WANG Ming-gui. In situ FT-IR study on CO oxidation over Co3O4/CeO2 catalyst[J]. J Fuel Chem Technol, 2012, 40(2): 229-234.)

    11. [11]

      [11] PARK E D, LEE J S. Effect of surface treatment of the support on CO oxidation over carbon-supported wacker-type catalysts[J]. J Catal, 2000, 193: 5-15.

    12. [12]

      [12] WANG F G, ZHANG H J, HE D N. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts[J]. Environ Technol, 2014, 35(3): 347-354.

    13. [13]

      [13] SHEN Y X, LU G Z, GUO Y, WANG Y Q. A synthesis of high-efficiency Pd-Cu-Clx/Al2O3 catalyst for low temperature CO oxidation[J]. Chem Commun, 2010, 46: 8433-8435.

    14. [14]

      [14] SHEN Y X, LU G Z, GUO Y, WANG Y Q, GUO Y L, GONG X Q. Study on the catalytic reaction mechanism of low temperature oxidation of CO over Pd-Cu-Clx/Al2O3 catalyst[J]. Catal Today, 2011, 175: 558-567.

    15. [15]

      [15] JAE S L, EUN D P, BYUNG J S. Process development for low temperature CO oxidation in the presence of water and halogen compounds[J]. Catal Today, 1999, 54: 57-64.

    16. [16]

      [16] CHUL W L, SEOK J P, YOUNG S K, PAUL J C. Catalytic oxidation of carbon monoxide at low temperature over Pd-Cu loaded porous supports[J]. B Kor Chem Soc, 1995, 16(3): 296-298.

    17. [17]

      [17] 王永钊, 程慧敏, 范莉渊, 石晶, 赵永祥. 焙烧温度对Pd-Cu/凹凸棒土CO常温催化氧化性能的影响[J]. 燃料化学学报, 2014, 42(5): 597-602. (WANG Yong-zhao, CHEN Hui-min, FAN LI-yuan, SHI Jing, ZHAO Yong-xiang. Effect of calcination temperature on catalytic performance of Pd-Cu/attapulgite clay catalyst for CO oxidation at room temperature[J]. J Fuel Chem Technol, 2014, 42(5): 597-602.)

    18. [18]

      [18] 王永钊, 张卓, 李凤梅, 赵永祥. Pd-Cu/凹凸棒石黏土催化剂催化CO氧化性能[J]. 工业催化, 2011, 11(19): 75-79. (WANG Yong-zhao, ZHANG Zhuo, LI Feng-mei, ZHAO Yong-xiang. Catalytic performance of Pd-Cu/attapulgite clay catalyst for CO oxidation[J]. Ind Catal, 2011, 11(19): 75-79.)

    19. [19]

      [19] DYAKONOV A J. Abatement of CO from relatively simple and complex mixtures - II. Oxidation on Pd-Cu/C catalysts[J]. Appl Catal B: Environ, 2003, 45(4): 257-267.

    20. [20]

      [20] PARK E D, LEE J S. Effects of copper phase on CO oxidation over supported Wacker-type catalysts[J]. J Catal, 1998, 180(2): 123-131.

    21. [21]

      [21] YOU J, CHEN F, ZHAO X B, CHEN Z G. Preparation, characterization and catalytic oxidation property of CeO2/Cu2+-attapulgite (ATP) nanocomposites[J]. J Rare Earth, 2010, 28(9): 347-352.

    22. [22]

      [22] CAO J L, SHAO G S, WANG Y, LIU Y P, YUAN Z Y. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation[J]. Catal Commun, 2008, 9: 2555-2559.

    23. [23]

      [23] YANG H M, TANG A D, OUYANG J, LI M, MANN S. From natural attapulgite to mesoporous materials: methodology, characterization and structural evolution[J]. J Phys Chem B, 2010, 114: 2390-2398.

    24. [24]

      [24] WEI W, GAO P, XIE J M, ZONG S K, CUI H L, YUE X J. Uniform Cu2Cl(OH)3 hierarchical microspheres: A novel adsorbent for methylene blue adsorptive removal from aqueous solution[J]. J Solid State Chem, 2013, 204: 305-313.

  • 加载中
    1. [1]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    2. [2]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    11. [11]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    18. [18]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

Metrics
  • PDF Downloads(0)
  • Abstract views(499)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return