Citation: JI Jie, SHI Yue-feng, SUO Zhi, XU Shi-fa, YANG Song, LI Peng-fei. Comparison on properties of modified asphalt blended with DCLR and TLA[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(9): 1061-1067. shu

Comparison on properties of modified asphalt blended with DCLR and TLA

  • Corresponding author: JI Jie, 
  • Received Date: 23 December 2014
    Available Online: 16 April 2015

    Fund Project: 国家自然科学基金(51478028) (51478028) 北京市属高等学校高层次人才引进与培养计划项目(PXM2013-014210-000165)。 (PXM2013-014210-000165)

  • The DCLR and TLA content are 5%, 10%, 15% and 20% by mass of SK-90 base asphalt respectively. The properties and microstructures of DCLR and TLA blending modified asphalts are tested by SHRP PG, penetration system, infrared spectrometer and gel permeation chromatograph. It indicates that adding DCLR and TLA can improve the high-temperature properties of asphalts, but the low-temperature and fatigue resistance of asphalts are declined. Based on the functional group and molecular weight distribution of asphalts, it predicts that the physical modification be happened in the DCLR and TLA blending modified asphalt. Meanwhile, the DCLR cannot replace TLA totally.
  • 加载中
    1. [1]

      [1] 郑丽珍. 澄合 10# 高硫煤直接液化性能及其残渣改性基质沥青研究[D]. 西安: 西安科技大学, 2012. (ZHENG Li-zhen. Study on the liquefaction property of 10# chenghe high sulfur coal and preparation of modified asphalt from chenghe coal liquefaction residue[D]. Xi'an: Xi'an University of Science and Technology, 2012.)

    2. [2]

      [2] 吴春来, 谢克昌. 煤炭直接液化[M]. 北京: 化学工业出版社, 2010. (WU Chun-lai, XIE Ke-chang. Direct coal lquefaction[M]. Beijing: Chemical Industry Press, 2010.)

    3. [3]

      [3] 张伟, 金俊杰, 俞虹, 田莉雅. 浅谈煤炭直接液化与我国的能源发展[J]. 洁净煤技术, 2001, 7(3): 31-35. (ZHANG Wei, JIN Jun-jie, YU Hong, TIAN Li-yan. Discussion on the direct coal liquefaction and china's energy development[J]. Clean Coal Technol, 2001, 7(3): 31-35.)

    4. [4]

      [4] 谷小会. 煤直接液化残渣的性质及利用现状[J]. 洁净煤技术, 2012, 18(3): 24-31. (GU Xiao-hui. Properties and utilization of coal direct liquefaction residue[J]. Clean Coal Technol, 2012, 18(3): 24-31.)

    5. [5]

      [5] 王寨霞, 杨建丽, 刘振宇. 煤直接液化残渣对道路沥青改性作用的初步评价[J]. 燃料化学学报, 2007, 35(1): 109-112. (WANG Zhai-xia, YANG Jian-li, LIU Zhen-yu. Preliminary evaluation of direct coal liquefaction residue modification effect on road asphalt[J]. J Fuel Chem Technol, 2007, 35(1): 109-112.)

    6. [6]

      [6] 朱伟平. 煤直接液化残渣改性沥青的研究[J]. 神华科技, 2009, 7(6): 68-85. (ZHU Wei-ping. Research on properties of direct coal liquefaction residue modified asphalt[J]. Shenhua Technol, 2009, 7(6): 68-85.)

    7. [7]

      [7] 何亮. 煤液化残渣复合改性沥青制备及其性能研究[D]. 西安: 长安大学硕士学位论文, 2013. (HE Liang. Research on preparation and properties of direct coal liquefaction residue modified asphalt[D]. Xi'an: Chang'an University, 2013.)

    8. [8]

      [8] 张艳荣. 液化残渣改性道路石油沥青的探索研究[D]. 西安: 西北大学硕士学位论文, 2010. (ZHANG Yan-rong. Exploratory study on direct coal liquefaction residue modified asphalt[D]. Xi'an: Northwest University, 2010.)

    9. [9]

      [9] JTG E20-2011, 公路工程沥青及沥青混合料试验规程[S]. (JTG E20-2011, Standard test methods of bitumen and bituminous mixtures for highway engineering[S].)

    10. [10]

      [10] JTG F40-2004, 公路沥青路面施工规范[S]. (JTG F40-2004, Technical specification for construction of highway asphalt pavements[S].)

    11. [11]

      [11] 胡皆汉. 实用红外光谱学[M]. 北京: 科学出版社, 2011. (HU Jie-han. The utility of IR spectroscopy[M]. Beijing: Science Press, 2011.)

    12. [12]

      [12] 刘国诠, 余兆楼. 色谱柱技术[M]. 北京: 化学工业出版社, 2001. (LIU Guo-quan, YU Zhao-lou. Chromatographic column technology[M]. Beijing: ChemicalIndustry Press, 2001.)

    13. [13]

      [13] 金日光, 华幼卿. 高分子物理[M]. (3版). 北京: 化学工业出版社, 2007. (JIN Ri-guang, HUA You-qing. Polymer physics[M]. 3rd ed. Beijing: Chemical Industry Press, 2007.)

  • 加载中
    1. [1]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    2. [2]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    12. [12]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    13. [13]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    14. [14]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    20. [20]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

Metrics
  • PDF Downloads(0)
  • Abstract views(420)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return