Citation: CHEN Jing, SUN Ming, DAI Xiao-min, YAO Yi, LIU Yuan-yuan, HE Min, LV Bo, ZHAO Xiang-long, MA Xiao-xun. Asphalt modification with direct coal liquefaction residue based on benzaldehyde crosslinking agent[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(9): 1052-1060. shu

Asphalt modification with direct coal liquefaction residue based on benzaldehyde crosslinking agent

  • Corresponding author: MA Xiao-xun, 
  • Received Date: 5 February 2015
    Available Online: 1 April 2015

    Fund Project: 国家科技部国际科技合作专项(S2013GR0064) (S2013GR0064) 国家高技术研究发展计划(863计划,2011AA05A2021) (863计划,2011AA05A2021) 国家自然科学基金(21406178) (21406178) 高等学校博士学科点专项科研基金(20116101110019) (20116101110019) 陕西省自然科学基础研究计划(2014JQ2070) (2014JQ2070) 西北大学科学研究基金(NG14029)。 (NG14029)

  • The modified asphalt was prepared via adding tetrahydrofuran soluble fraction of direct coal liquefaction residue (THFS) as modifier and benzaldehyde as crosslinking agent. Modification conditions such as mixing temperature, ratio of THFS and crosslinking agent to asphalt were studied. The optimal conditions are mixing temperature of 170 ℃, and THFS to asphalt ratio of 4%. The modified asphalt can get the better properties by using crosslinking agent. Characterizations of modified asphalt were analyzed by TG-FTIR, FT-IR and fluorescence microscope. Comparing with other asphalt the weight loss of modified asphalt which added benzaldehyde as crosslinking agent is lower. The modified asphalt with benzaldehyde as crosslinking agent has less CH4 release than other samples and CH4 was released at higher temperature. The involvement of benzaldehyde significantly enhances the stretching vibration of aliphatics (-CH2-) of modified asphalt at 2 924 and 2 854 cm-1 as well as the transmittance of the absorption peaks at 872, 810 and 746 cm-1 representing benzene substituent, and a new absorption peak at 1 060 cm-1 assigned to C-O-C stretching vibration. Moreover the new modified particle in the fluorescence microscope images indicates that the involvement of cross-linking agent may cause polycondensation of THFS and the matrix asphalt.
  • 加载中
    1. [1]

      [1] KRISHNAN J M, RAJAGOPAL K R. On the mechanical behavior of asphalt[J]. Mech Mater, 2005, 37(11): 1085-1100.

    2. [2]

      [2] 廖克俭, 丛玉风. 道路沥青生产与应用技术[M]. 北京: 化学工业出版, 2004: 168. (LIAO Ke-jian, CONG Yu-feng. The production and application technology of paving asphalt[M]. Beijing: Chemical Industry Press, 2004: 168.)

    3. [3]

      [3] WEN G, ZHANG Y, ZHANG Y X, SUN K, FAN Y Z. Rheological characterization of storage-stable SBS-modified asphalts[J]. Polym Test, 2002, 21(3): 295-302.

    4. [4]

      [4] LARSEN D O, ALESSANDRINI J L, BOSCH A, CORTIZO M S. Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing[J]. Constr Build Mater, 2009, 23(8): 2769-2774.

    5. [5]

      [5] AIREY G D. Rheological properties of styrene butadiene styrene polymer modified road bitumens[J]. Fuel, 2003, 82(14): 1709-1719.

    6. [6]

      [6] YILDIRIM Y. Polymer modified asphalt binders[J]. Constr Build Mater, 2007, 21(1): 66-72.

    7. [7]

      [7] DONG F Q, ZHAO W Z, ZHANG Y Z, WEI J M, FAN W Y, YU Y J, WANG Z. Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt[J]. Constr Build Mater, 2014, 62: 1-7.

    8. [8]

      [8] NAVARRO F J, MARTINEZ-BOZA F J, PARTAL P, GALLEGOS C. Effect of processing variables on the linear viscoelastic properties of SBS-oil blends[J]. Polym Eng Sci, 2001, 41(12): 2216-2225.

    9. [9]

      [9] SENGOZ B, ISIKYAKAR G. Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen[J]. Constr Build Mater, 2008, 22(9): 1897-1905.

    10. [10]

      [10] 姜丽伟.特立尼达湖改性沥青路用性能试验研究[J]. 四川建筑科学研究, 2013, 39(1): 178-181. (JIANG Li-wei. The experimental study on the road performance of TLA modified asphalt mixtures[J]. Sichuan Build Sci, 2013, 39(1): 178-181.)

    11. [11]

      [11] 王寨霞, 杨建丽, 刘振宇. 煤直接液化残渣对道路沥青改性作用的初步评价[J]. 燃料化学学报, 2007, 35(1): 109-112. (WANG Zhai-xia, YANG Jian-li, LIU Zhen-yu. Preliminary study on direct coal liquefaction residue as paving asphalt modifier[J]. J Fuel Chem Technol, 2007, 35(1): 109-112.)

    12. [12]

      [12] 朱伟平. 煤直接液化残渣改性沥青的研究[J]. 神华科技, 2009, 7(6): 68-71. (ZHU Wei-ping. Study on direct coal liquefaction residue as asphalt[J]. Shenhua Sci Technol, 2009, 7(6): 68-71.)

    13. [13]

      [13] WU M M, YANG J L, ZHANG Y Z. Comparison study of modified asphalt by different coal liquefaction residues and different preparation methods[J]. Fuel, 2012, 100: 66-72.

    14. [14]

      [14] 曾利红. 中间相沥青的合成及性能研究[D]. 武汉: 武汉理工大学, 2005. (ZENG Li-hong. Synthesis and performance study on the mesophase pitch[D]. Wuhan: Wuhan University of Technology, 2005.)

    15. [15]

      [15] THOMSON B, RUDIN A, LAJOIC G. Effect of cross-likner on particle morphology[J]. J Appl Polym Sci, 1996, 59: 2009-2028.

    16. [16]

      [16] 杨军. 聚合物改性沥青[M]. 北京: 化学工业出版社, 2006: 6-14. (YANG Jun. Polymer modified bitumen[M]. Beijing: Chemical Industry Press, 2006: 6-14.)

    17. [17]

      [17] YANG J L, WANG Z X, LIU Z Y, ZHANG Y Z. Novel use of residue from direct coal liquefaction process[J]. Energy Fuel, 2009, 23: 4717-4722.

    18. [18]

      [18] 楚希杰, 李文, 白宗庆, 李保庆. 神华煤直接液化残渣热解特性研究[J]. 燃料化学学报, 2009, 37(4): 393-397. (CHU Xi-jie, LI Wen, BAI Zong-qing, LI Bao-qing. Pyrolysis characteristics of Shenhua direct liquefaction residue[J]. J Fuel Chem Technol, 2009, 37(4): 393-397.)

    19. [19]

      [19] 温永. 有机蒙脱土-氢氧化物改性沥青的制备及其阻燃性能研究[D]. 西安: 长安大学, 2012. (WEN Yong. The preparation and flame retardancy of organo-montmorillonite/hydroxid modified asphalt[D]. Xi'an: Chang'an University, 2012.)

    20. [20]

      [20] SUN M, MA X X, CAO W, DU P P, YANG Y H, XU L. Effect of polymerization with paraformaldehyde on thermal reactivity of >300 ℃ fraction from low temperature coal tar[J]. Thermochim Acta, 2012, 538: 48-54.

    21. [21]

      [21] 燕永利, 何力. 以石油沥青为单体的COPNA树脂的合成及其机理[J]. 高分子材料科学与工程, 2003, 19: 93-96. (YAN Yong-li, HE Li. Study on the synthesis of condensed polynuclear aromatics resin using petroleum asphalt as monomer and its mechanism[J]. Polym Mater Sci Eng, 2003, 19: 93-96.)

    22. [22]

      [22] LIU Q, WANG S Y, ZHENG Y, LUO Z Y, CEN K F. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. J Anal Appl Pyrolysis, 2008, 82(1): 170-177.

    23. [23]

      [23] XU T, HUANG X M. Study on combustion mechanism of asphalt binder by using TG-FTIR technique[J].Fuel, 2010, 89(9): 2185-2190.

    24. [24]

      [24] XIAO F P, PUNITH V S, AMIRKHANIAN S N. Effects of non-foaming WMA additives on asphalt binders at high performance temperatures[J]. Fuel, 2012, 94: 144-155.

    25. [25]

      [25] VALCKE E, RORIF F, SMETS S. Ageing of eurobitum bituminised radioactive waste: An ATR-FTIR spectroscopy study[J]. J Nucl Mater, 2009, 393(1): 175-185.

    26. [26]

      [26] DE Sá M F A, LINS V F C, PASA V M D, LEITE L F M. Weathering aging of modified asphalt binders[J]. Fuel Process Technol, 2013, 115: 19-25.

    27. [27]

      [27] AKRAMI H A, YARDIM M F, AKAR A, EKINCI E. FT-i.r. characterization of pitches derived from Avgamasya asphaltite and Raman-Dincer heavy crude[J]. Fuel, 1997, 76(14/15): 1389-1394.

    28. [28]

      [28] 杭继虎, 高冬梅, 彭浩, 吴金丽, 张福强. 焦油沥青基COPNA树脂的合成研究[J]. 化工新型材料, 2012, 40(11):32-34. (HANG Ji-hu, GAO Dong-mei, PENG Hao, WU Jin-li, ZHANG Fu-qiang. Study on composition of COPNA risin based on tar asphalt[J]. New Chem Mater, 2012, 40(11):32-34.)

    29. [29]

      [29] 宋士华, 马明亮, 魏健宁, 林起浪, 李铁虎, 李世斌, 杜大明. 对甲基苯甲醛改性煤沥青的研究[J]. 煤炭转化, 2005, 28(1): 78-81. (SONG Shi-hua, MA Ming-liang, WEI Jian-ning, LIN Qi-lang, LI Tie-hu, LI Shi-bin, DU Da-ming. Study on mechanism and optical structure of modified coal tar pitch with 4-methyl benzaldehyde[J]. Coal Convers, 2005, 28(1): 78-81.)

  • 加载中
    1. [1]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    4. [4]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    5. [5]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    11. [11]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    12. [12]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    15. [15]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    16. [16]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    17. [17]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    18. [18]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    19. [19]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(0)
  • Abstract views(536)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return