Citation: ZHOU Xian-xian, QU Xuan, ZHANG Rong, BI Ji-cheng. Pore evolution of coal based porous carbon in supercritical water[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(9): 1025-1031. shu

Pore evolution of coal based porous carbon in supercritical water

  • Corresponding author: BI Ji-cheng, 
  • Received Date: 19 May 2015
    Available Online: 6 July 2015

    Fund Project: 国家高技术研究发展计划(863计划, 2011AA05A201)。 (863计划, 2011AA05A201)

  • The influences of temperature, time, and mineral matter on conversion of lignite in a semi-continuous supercritical water reactor (SCWR) were investigated. The evolution of pore during reaction in SCWR was deduced with Fourier transform infrared and Raman spectra characterization. It is found that supercritical water can quickly extract the volatile from coal under low temperature, which promotes char graphitization and formation of carbon precursor. When temperature is above 550 ℃, more C-O-C cross-linking structures are formed, accompanied by a significant increase of surface area. The extraction yield of deashed coal is relatively high during pyrolysis process and more micropores are formed compared with raw coal. Furthermore, mineral matter in coal promotes the formation of mesopore.
  • 加载中
    1. [1]

      [1] 姜克隽, 胡秀莲, 庄幸, 刘强, 朱松丽. 中国2050年的能源需求与CO2排放情景[J]. 气候变化研究进展, 2008, 4(5): 296-302. (JIANG Ke-jun, HU Xiu-lian, ZHUANG Xing, LIU Qiang, ZHU Song-li. China's Energy demand and greenhouse gas emission scenarios in 2050[J]. Adv Clim Change Res, 2008, 4(5): 296-302.)

    2. [2]

      [2] WANG J, TAKARADA T. Characterization of high-temperature coal tar and supercritical-water extracts of coal by laser desorption ionization-mass spectrometry[J]. Fuel Process Technol, 2003, 81(3): 247-258.

    3. [3]

      [3] 王知彩, 李良, 水恒福, 雷智平, 任世彪, 康士刚, 潘春秀. 先锋褐煤热溶及热溶物红外光谱表征[J]. 燃料化学学报, 2011, 39(6): 401-406. (WANG Zhi-cai, LI Liang, SHUI Heng-fu, LEI Zhi-ping, REN Shi-biao, KANG Shi-gang, PAN Chun-xiu. High temperature thermal extraction of xianfeng lignite and FT-IR characterization of its extracts and residues [J]. J Fuel Chem Technol, 2011, 39(6): 401-406.)

    4. [4]

      [4] KWANRUTHAI O, PATTARAPAN P, SOMKIAT N. Co-liquefaction of coal and used tire in supercritical water[J]. Energy Power Eng, 2010, 2(2): 95-102.

    5. [5]

      [5] SISKIN M, KATRITZKYA R. Reactivity of organic compounds in superheated water: General background[J]. Chem Rev, 2001, 101(4): 825-836.

    6. [6]

      [6] CONNOLLY J F. Solubility of hydrocarbons in water near the critical solution temperatures[J]. J Chem Eng Data, 1966, 11(1): 13-16.

    7. [7]

      [7] OKITSUGU K. Solvation in supercritical fluids: Its effects on energy transfer and chemical reactions[J]. Chem Rev, 1999, 99(2): 355-390.

    8. [8]

      [8] SHIN H Y, MATSUMOTO K, HIGASHI H, IWAI Y, ARAI Y. Development of a solution model to correlate solubilities of inorganic compounds in water vapor under high temperatures and pressures[J]. J Supercrit Fluids, 2001, 21(2): 105-110.

    9. [9]

      [9] DESHPANDE G V, HOLDER G D, BISHOP A A,GOPAL J, WENDER I. Extraction of coal using supercritical water[J]. Fuel, 1984, 63(7): 956-960.

    10. [10]

      [10] WU B, HU H Q, ZHAO Y P, JIN L J, FANG Y M. XPS analysis and combustibility of residues from two coals extraction with sub- and supercritical water[J]. J Fuel Chem Technol, 2009, 37(4): 385-392.

    11. [11]

      [11] WU B, HU H Q, HUANG S P, FANG Y M, LI X, MENG M. Extraction of weakly reductive and reductive coals with sub- and supercritical water[J]. Energy Fuels, 2008, 22(6): 3944-3948.

    12. [12]

      [12] MIGUREL MS, M. JESËS S M, JUAN M J G, FRANCISCO S, FRANCISCO R-R, AURELIO S. Development of porosity in a char during reaction with steam or supercritical water[J]. J Chem Phys, 2006, 110(25): 12360-12364.

    13. [13]

      [13] FRANCISCO S, M. JESËS S M, IZQUIERDO C. C/H2O reaction under supercritical conditions and their repercussions in the preparation of activated carbon[J]. J Chem Phys, 2007, 111(37): 14011-14020.

    14. [14]

      [14] FRANCISCO S, M. JESËS S M, JESSICA M, IZQUIERDO C. Activated carbon fibers prepared from a phenolic fiber by supercritical water and steam activation[J]. J Phys Chem C, 2008, 112(50): 20057-20064.

    15. [15]

      [15] MONTANÉ D, FIERRO V, MARÊCHÉ J F, ARANDA L, CELZARD A. Activation of biomass-derived charcoal with supercritical water[J]. Microporous Mesoporous Mater, 2009, 119(1/3): 53-59.

    16. [16]

      [16] CAI Q, HUANG Z H, KANG F Y, YANG J B. Preparation of activated carbon microspheres from phenolic-resin by supercritical water activation[J]. Carbon, 2004, 42(4): 775-783.

    17. [17]

      [17] 蔡琼, 黄正宏, 康飞宇. 采用超临界水活化与水蒸气活化工艺由果壳制备活性炭的对比研究 [C]//第六届全国新型炭材料研讨会论文集, 北京, 万方数据电子出版社, 2003: 117-123. (CAI Qiong, HUANG Zheng-hong, KANG Fei-yu. Comparison of activated carbons prepared from nutshells by means of supercritical water activation and steam activation processes [C]//The sixth national symposium on new carbon materials, Beijing, Wanfang Data electronic press, 2003: 117-123.)

    18. [18]

      [18] 蔡琼, 黄正宏, 康飞宇. 超临界水和水蒸气活化制备酚醛树脂基活性炭的对比研究[J]. 新型炭材料, 2005, 20(2): 122-127. (CAI Qiong, HUANG Zheng-hong, KANG Fei-yu.A comparative study of phenolic resin-based activated carbons by means of supercritical water activation and steam activation[J]. New Carbon Mater, 2005, 20(2): 122-127.)

    19. [19]

      [19] SAMARAS P, DIAMADOPOULOS E, SAKELLAROPOULOS G P. The effect of demineralization on lignite activation[J]. Carbon, 1991, 29(8): 1181-1190.

    20. [20]

      [20] ZHOU X X, QU X, ZHANG R, BI J C. Study of the microtextural transformation of coal char during supercritical water activation[J]. Fuel Process Technol, 2015, 135: 195-202.

    21. [21]

      [21] MATSUMURA Y, XU X, JR MJA. Gasification characteristics of an activated carbon in supercritical water[J]. Carbon, 1997, 35(6): 819-824.

    22. [22]

      [22] NAL Y, CEYLAN K. Effects of treatments on the mineral matter and acidic functional group contents of Turkish lignites[J]. Fuel, 1995, 74(7): 972-977.

    23. [23]

      [23] KEOWN D M, LI X J, HAYASHI J I, LI C Z. Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman spectroscopy[J]. Fuel Process Technol, 2008, 89(12): 1429-1435.

    24. [24]

      [24] LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.

    25. [25]

      [25] LI X J, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10/11): 1509-1517.

    26. [26]

      [26] LAHAYE J, EHRBURGER P. Fundamental issues in control of carbon gasification reactivity[M]. Springer Science Business Media, 1991, 533-571.

  • 加载中
    1. [1]

      Zhanxiang Liu Chengshan Yuan Jie Han Shuanglian Cai Qihan Zhang Lin Wu Yuan Zheng Xingwen Sun Qingwen Liu Ying Xiong Guangao Yu Xin Du Houjin Li Jianrong Zhang Shuyong Zhang . Recommendations for Basic Operations and Standards for Organic Chemical Extraction and Washing Experiments. University Chemistry, 2025, 40(5): 55-65. doi: 10.12461/PKU.DXHX202410039

    2. [2]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    3. [3]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    4. [4]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    5. [5]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    6. [6]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    7. [7]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    8. [8]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    16. [16]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    17. [17]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    18. [18]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    19. [19]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    20. [20]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

Metrics
  • PDF Downloads(0)
  • Abstract views(408)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return