Citation: LIU Ya-ming, SHU Hang, XU Qi-sheng, ZHANG Yu-hua, YANG Lin-jun. FT-IR study of the catalytic oxidation of SO2 during the process of selective catalytic reduction of NO with NH3 over commercial catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(8): 1018-1024. shu

FT-IR study of the catalytic oxidation of SO2 during the process of selective catalytic reduction of NO with NH3 over commercial catalysts

  • Corresponding author: YANG Lin-jun, 
  • Received Date: 27 March 2015
    Available Online: 21 May 2015

    Fund Project: 广东电网有限责任公司科技项目(K-GD2013-055) (K-GD2013-055)国家重点基础研究发展规划(973计划,2013CB228505)。 (973计划,2013CB228505)

  • This work briefly reveals the process of catalytic oxidation of SO2 and the influences of NH3, NO and O2 on the oxidation behavior based on FT-IR.It suggests that the process of oxidation of SO2: the absorption of SO2 on V2O5 sites occupying its O atom in the form of SO2-3; reaction between absorbed SO2 and O atom in V5+-OH to form an VOSO4-like structure;reoxidation of V4+ to V5+ by O2,promoting the transformation from VOSO4-like intermediate to SO3 and V2O5. NH3 and NO competitively absorb with SO2,suppressing its oxidation behavior. The removal of NOx and the oxidation of SO2 is the relationship of mutual inhibition.
  • 加载中
    1. [1]

      [1] 赵宇峰, 赵博, 禚玉群, 陈昌和, 徐旭常. SO2对于铁基硫酸盐的NH3选择性还原NO催化活性的影响[J]. 中国电机工程学报, 2011, 31(23): 27-33. (ZHAO Yu-feng, ZHAO Bo, ZHUO Yu-qun, CHEN Chang-he, XU Xu-chang. Influences of SO2 on the catalytic effect for selective catalytic reduction of NO by NH3 over iron-based sulfates[J]. Proc CSEE, 2011, 31(23): 27-33.)

    2. [2]

      [2] 朱宝山. 燃煤锅炉大气污染物净化技术手册[M]. 北京: 中国电力出版社, 2006: 5-10. (ZHU Bao-shan. The purificatory technical manual of atmospheric pollutants from coal-fired boilers[M]. Beijing: China Electric Power Press, 2006: 5-10.)

    3. [3]

      [3] 吴碧君, 刘晓勤, 肖萍. TiO2负载的二元金属氧化物催化剂低温NH3选择性还原NOx的研究[J]. 中国电机工程学报, 2008, 28(23): 75-80. (WU Bi-jun, LIU Xiao-qin, XIAO Ping. Binary metal oxides supported on TiO2 for low-temperature selective catalytic reduction of NOx with NH3[J]. Proc CSEE, 2008, 28(23): 75-80.)

    4. [4]

      [4] 马双忱, 金鑫, 孙云雪, 崔基伟. SCR烟气脱硝过程硫酸氢铵的生成机理与控制[J]. 热力发电, 2010, 39(8): 12-17. (MA Shuang-chen, JIN Xin, SUN Yun-xue, CUI Ji-wei. The formation mechanism of ammonium bisulfate in SCR flue gas denitrification process and control thereof[J]. Therm Power Gener, 2010, 39(8): 12-17.)

    5. [5]

      [5] 马双忱, 郭蒙, 宋卉卉, 陈公达, 杨洁红, 李钊. 选择性催化还原过程中硫酸氢铵形成机理及影响因素[J]. 热力发电, 2014, 43(2): 75-78. (MA Shuang-chen, GUO Meng, SONG Hui-hui, YANG Jie-hong, LI Zhao. Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process[J]. Therm Power Gener, 2014, 43(2): 75-78.)

    6. [6]

      [6] SHOMATE C H, NAYLOR B F. High-temperature heat contents of aluminum oxide, aluminum sulfate, potassium sulfate, ammonium sulfate and bisulfate sulfate[J]. J Am Chem Soc, 1945, 67(1): 72-75.

    7. [7]

      [7] BURKE J M, JOHNSON K L. Ammonium sulfate and bisulfate formation in air preheaters. Washington: United States Environment Protection Agency, 1982.

    8. [8]

      [8] 张强. 燃煤电站SCR烟气脱硝技术及工程应用[M]. 北京: 化学工业出版社, 2007: 25. (ZHANG Qiang. Technology of SCR flue gas denitration in coal fired power plant and its application in Engineering[M]. Beijing: Chemical Industry Press, 2007: 25.)

    9. [9]

      [9] LI P, LIU Q Y, LIU Z Y. Behaviors of NH4HSO4 in SCR of NO by NH3 over different cokes[J]. Chem Eng J, 2012, 181: 169-173.

    10. [10]

      [10] ZHENG Y, JENSEN A D, JOHNSSON J E. Laboratory investigation of selective catalytic reduction catalysts: Deactivation by potassium compounds and catalyst generation[J]. Ind Eng Chem Res, 2004, 43(4): 941-947.

    11. [11]

      [11] 赵宗让. 电厂锅炉SCR烟气脱硝系统设计优化[J].中国电力, 2005, 38(11): 69-74. (ZHAO Zong-rang. Design optimization of SCR system for coal-fired boilers[J]. Electric power, 2005, 38(11): 69-74.)

    12. [12]

      [12] CHOTHANI C. Ammonium bisulfate(ABS) measurement for SCR NOx control and air heater protection. Carnegie: Breen Energy Solution, 2008: 1-13.

    13. [13]

      [13] KANTCHEVAA M, CAYIRTEPEA I, NAYDENOVB A, IVANOVB G. FT-IR spectroscopic investigation of the effect of SO2 on the SCR of NOx with propene over ZrO2-Nb2O5 catalyst[J]. Catal Today, 2011, 176: 437-430.

    14. [14]

      [14] LONG R Q, YANG R T. FT-IR and kinetic studies of the mechanism of Fe3+-exchanged TiO2-pillared clay catalyst for selective catalytic reduction of NO with ammonia[J]. J Catal, 2000, 190: 22-31.

    15. [15]

      [15] ZHANG L, LI L L, Cao Y, YAO X J, GE C Y, GAO F, YU D, TANG C J, DONG L.Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B: Environ, 2015, 165: 589-598.

    16. [16]

      [16] LONG R Q, YANG R T. Selective Catalytic Reduction of Nitrogen Oxides by Ammonia over Fe3+- Exchanged TiO2-Pillared Clay Catalysts[J].Appl Catal B: Environ, 1999, 186: 254-268.

    17. [17]

      [17] ZHANG L, WANG D, LIU Y, KAMASAMUDRAM K, LI J H, EPLING W. SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst[J]. Appl Catal, 2014, 156: 371-377.

    18. [18]

      [18] MA J R, LIU Z Y, LIU Q Y, GUO S J, HUANG Z G, XIAO Y. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures-role of V2O5 on SO2 removal[J]. Fuel Process Technol, 2008, 89: 242-248.

    19. [19]

      [19] GUO X Y, CALVIN B, HECKER W, BAXTER L L. Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems[J]. Appl Catal B: Environ, 2009, 92: 30-40.

    20. [20]

      [20] WATSON J M, OZKAN U S. Spectroscopic characterization of surface species in deactivation of Sol-gel Gd-Pd catalysts in NO reduction with CH4 in the presence of SO2[J]. J Catal, 2003, 217: 1-11.

    21. [21]

      [21] KLOSE B S, JENTOFT F C. In situ diffuse-reflectance infrared spectroscopic investigation of promoted sulfated zirconia catalysts during n-butane isomerization[J]. J Catal, 2005, 233: 68-80.

    22. [22]

      [22] XIAO Y, LIU Q Y, LIU Z Y, HUANG Z G, GUO Y X, YANG J L. Roles of lattice oxygen in V2O5 and activated coke in SO2 removal over coke-supported V2O5 catalysts [J]. Appl Catal B: Environ, 2008, 82: 114-119.

    23. [23]

      [23] BOGHOSIAN S, FEHRMANN R, BJERRUM N J. Formation of crystalline compounds and catalyst deactivation during SO2 oxidation in V2O5-M2S2O7 melts[J]. J Catal, 1989, 119: 121-134.

    24. [24]

      [24] SUN D K, LIU Q Y, LIU Z Y, GUI G Q, HUANG Z G. Adsorption and oxidation of NH3 over V2O5/AC surface[J]. Appl Catal B: Environ, 2009, 92: 462-467.

    25. [25]

      [25] RAMIS G, YI L, BUSCA G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study[J]. Catal Today, 1996, 28(4): 373.

    26. [26]

      [26] YANG R T, LI W B, CHEN N. Reversible chemisorption of nitric oxide in the presence of oxygen on titania and titania modified with surface sulfate[J]. Appl Catal A: Gen, 1998, 169: 215-225.

    27. [27]

      [27] TOPSOE N Y, TOPSOE H, DUMESIC J A. Vanadia-titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia.1.Combined temperature programmed in-situ Ftir and online mass-spectroscopy studies[J]. J Catal, 1995, 151(1): 226-240.

    28. [28]

      [28] JOSEPH P D, HARVEY G S, ISRAEL E W. Molecular structure-reactivity relationships for the oxidation of sulfur dioxide over supported metal oxide catalysts[J]. Catal Today, 1999, 53: 543-556.

    29. [29]

      [29] 朱崇兵, 金保升, 李峰, 翟俊霞. SO2氧化对SCR法烟气脱硝的影响[J]. 锅炉技术, 2008, 39(3): 68-72. (ZHU Chong-bing, JIN Bao-sheng, LI Feng, ZHAI Jun-xia. Influences of the oxidation of SO2 on the selective catalytic reduction of NO by NH3[J]. Boiler Technol, 2008, 39(3): 68-72.)

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    3. [3]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    8. [8]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    9. [9]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(0)
  • Abstract views(550)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return