Citation: CHENG Li-yu, XU Long-jun. Effects of electrode surface area on the performance of microbial fuel cells with the aging landfill leachate as substrate[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(8): 1011-1017. shu

Effects of electrode surface area on the performance of microbial fuel cells with the aging landfill leachate as substrate

  • Corresponding author: XU Long-jun, 
  • Received Date: 2 February 2015
    Available Online: 8 April 2015

    Fund Project: 重庆市基础与前沿研究计划重点项目(CSTC,2013jjB20001)。 (CSTC,2013jjB20001)

  • Bio-cathode microbial fuel cells (MFCs) were built to treat the aging landfill leachate; the effect of electrode surface area on the aging landfill leachate treatment and electrical performance of MFCs was investigated. The results show that for three sets of bio-cathode MFCs with the ratios of anode area to cathode area being 1:2, 2:2 and 2:1, the stable maximum output voltages are 408, 452 and 396mV, respectively, with the maximum electric power density of 145.73, 237.65 and 136.50mW/m3, the resistance of 350, 200 and 400Ω, and COD removal rate of 21.18%, 20.20% and 22.31%, respectively. After running for 30 days, the concentration of ammonia, nitrate and nitrite nitrogen in landfill leachate is decreased; the ammonia removal rates for the three sets of MFCs are 80.88%, 73.61% and 66.17%, respectively, which is related to the electricity generation of MFCs.
  • 加载中
    1. [1]

      [1] SEVDA S, DOMINGUEZ-BENETTON X, VANBROEKHOVEN K, DE WEVER W, SREKRISHNAN T R, PANT D. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell[J]. Appl Energy, 2013, 105: 194-206.

    2. [2]

      [2] WANG H, JIANG S C, WANG Y, XIAO B. Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater[J]. Bioresour Technol, 2013, 138: 109-116.

    3. [3]

      [3] LIEW K B, DAUD W R W, GHASEMI M, LEONG J X, LIM S S, ISMAIL M. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review[J]. Int J Hydrogen Energy, 2014, 39(10): 4870-4883.

    4. [4]

      [4] LIU S, SONG H, WEI S, YANG F, LI X. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland-Microbial fuel cell systems [J]. Bioresour Technol, 2014, 166: 575-583.

    5. [5]

      [5] ZHANG H, ZHANG R, ZHANG G, YANG F, GAO F. Modified graphite electrode by polyaniline tourmaline improves the performance of bio-cathode microbial fuel cell [J]. Int J Hydrogen Energy, 2014, 39(21): 11250-11257.

    6. [6]

      [6] MANSOORIAN H J, MAHVI A H, JAFARI A J. Bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing[J]. Enzyme Microb Technol, 2013, 52(6/7): 352-357.

    7. [7]

      [7] KIM J, KIM B, KIM H, YUN Z. Effects of ammonium ions from the anolyte within bio-cathode microbial fuel cells on nitrate reduction and current density[J]. Int Biodeterior Biodegrad, 2014, 95(Part A): 122-126.

    8. [8]

      [8] CHEN L, XIAO Y, ZHAO F. Biocathodes in microbial fuel cells[J]. Prog Chem, 2012, 24: 157-162.

    9. [9]

      [9] ALATRAKTCHI F A, ZHANG Y, SAFAA NOORI J, ANGELIDAKI I. Surface area expansion of electrodes with grass-like nanostructures and gold nanoparticles to enhance electricity generation in microbial fuel cells[J]. Bioresour Technol, 2012, 123: 177-183.

    10. [10]

      [10] SACCO N J, FIGUEROLA E L M, PATACCINI G, BONETTO M C, ERIJMAN L, CORTON E. Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells[J]. Bioresour Technol, 2012, 126: 328-335.

    11. [11]

      [11] GHANGREKAR M M, SHINDE V B. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production[J]. Bioresour Technol, 2007, 98(15): 2879-2885.

    12. [12]

      [12] 王艳芳, 刘百仓, 郑哲, 郑雪艳. 电极面积和电极间距对立方体型MFCs产电能力的影响[J]. 可再生能源, 2013, 31(3): 68-74. (WANG Yan-fang, LIU Bai-cang, ZHENG Zhe, ZHENG Xue-yan. Effects of the electrode area and electrode spacing on the electricity generation capacity of MFCs[J]. Renew Energy, 2013, 31(3): 68-74.)

    13. [13]

      [13] ZHANG Q, TIAN B, ZHANG X, GHULAM A, FANG C, HE R. Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants[J]. Waste Manage, 2013, 33(11): 2277-2286.

    14. [14]

      [14] GANESH K, JAMBECK J. Treatment of landfill leachate using microbial fuel cells: Alternative anodes and semi-continuous operation[J]. Bioresour Technol, 2013, 139: 383-387.

    15. [15]

      [15] 樊立萍, 苗晓慧. 微生物燃料电池处理餐饮废水及同步发电性能研究[J]. 燃料化学学报, 2014, 42(12): 1506-1512. (FAN Li-ping, MIAO Xiao-hui. Study on the performance of microbial fuel cell for restaurant wastewater treatment and simultaneous electricity generation[J]. J Fuel Chem Technol, 2014, 42(12): 1506-1512.)

    16. [16]

      [16] 荆淇. 生物阴极MFC处理垃圾渗滤液基础研究. 重庆: 重庆大学, 2014. (JIN Qi. Treatment of landfill leachate by biocathode microbial fuel cell. Chongqing: Chongqing University, 2014.)

    17. [17]

      [17] 国家环境保护总局. 水和废水监测分析方法[M]. 第四版. 北京:中国环境科学出版社, 2012. (State Environmental Protection Administration. Determination methods for examination of water and wastewater[M]. 4th ed. Beijing: China Environmental Science Press, 2012.)

    18. [18]

      [18] WANG Z, ZHENG Y, XIAO Y, WU S, WU Y, YANG Z, ZHAO F. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells[J]. Bioresour Technol, 2013, 144: 74-79.

    19. [19]

      [19] LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nat Rev Microbiol, 2009, 7: 375-381.

    20. [20]

      [20] CLAUWAERT P, VAN DER HA D, BOON N, VERBEKEN K, VERHAEGE M, RABAEY K, VERSTRAETE W. Open air biocathode enables effective electricity generation with microbial fuel cells[J]. Environ Sci Technol, 2007, 41(21): 7564-7569.

    21. [21]

      [21] ZHANG X, HE W, REN L, STAGER J, EVAN P J, LOGAN B E. COD removal characteristics in air-cathode microbial fuel cells[J]. Bioresour Technol, 2015, 176: 23-31.

    22. [22]

      [22] ZHANG X, ZHU F, CHEN L, ZHAO Q, TAO G. Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell[J]. Bioresour Technol, 2013, 146: 161-168.

  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    3. [3]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    17. [17]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

Metrics
  • PDF Downloads(0)
  • Abstract views(945)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return