Citation:
Sujit Kumar Guchhait, Subir Paul. Synthesis and characterization of ZnO-Al2O3 oxides as energetic electro-catalytic material for glucose fuel cell[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(8): 1004-1010.
-
One of the thrust areas of research is to find an alternative fuel to meet the increasing demand for energy. Glucose is a good source of alternative fuel for clean energy and is easily available in abundance from both naturally occurring plants and industrial processes. Electrochemical oxidation of glucose in fuel cell requires high electro-catalytic surface of the electrode to produce the clean electrical energy with minimum energy losses in the cell. Pt and Pt based alloys exhibit high electro-catalytic properties but they are expensive. For energy synthesis at economically cheap price, non Pt based inexpensive high electro catalytic material is required. Electro synthesized ZnO-Al2O3 composite is found to exhibit high electro-catalytic properties for glucose oxidation. The Cyclic Voltammetry and Chronoamperometry curves reflect that the material is very much comparable to Pt as far as the maximum current and the steady state current delivered from the glucose oxidation are concerned. XRD image confirms the mixed oxide composite. SEM images morphology show increased 3D surface areas at higher magnification. This attributed high current delivered from electrochemical oxidation of glucose on this electrode surface.
-
-
-
[1]
[1] PAUL S, JANA A, MITRA P. Study on bioelectrochemical fuel cell with algae[J]. J Inst Eng (India): Environ Eng Div, 2007, 88: 27-30.
-
[2]
[2] PAUL S, MONDAL P. Pyrolysis of forest residue for production of bio fuel[J]. J Int Energy, 2006, 7: 221-225.
-
[3]
[3] PAUL S, MONDAL P. Fabrication and characterization of bioelectrochemical fuel cell with pyrolysed produced bio oil and hydrolysed biomass by fermentation[J]. J Inst Eng (India), Part IDGE, 2009, 90: 40-45.
-
[4]
[4] PAUL S. Characterization of bioelectrochemical fuel cell fabricated with agriculture wastes and surface modified electrode materials[J]. J Fuel Cell Sci Technol, 2012, 9(2): 021013-9.
-
[5]
[5] RAO J R, MILAZZO G M. Blank (Eds.), bioelectrochemistry. I. Biological redox reactions[M]. Plenum Press, New York, 1983: 283-335.
-
[6]
[6] RAO M L B, DRAKE R F. Studies of electrooxidation of dextrose in neutral media[J]. J Electrochem Soc, 1969, 116(3): 334-337.
-
[7]
[7] JIN C, TANIGUCHI I. Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells[J]. Mater Lett, 2006, 61(11/12): 2365-2367.
-
[8]
[8] BASU D, BASU S. A study on direct glucose and fructose alkaline fuel cell[J]. Electrochima Acta, 2010, 55(20): 5775-5779.
-
[9]
[9] KERZENMACHER S, KRäLING U, METZ T, ZENGERLE R, VON STETTEN F. A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability[J]. J Power Sources, 2011, 196(3): 1264-1272.
-
[10]
[10] BASU D, BASU S. Synthesis and characterization of Pt-Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell[J]. Int J Hydrogen Energy, 2011, 36(22): 14923-14929.
-
[11]
[11] KERZENMACHER S, DUCREE J, ZENGERLE R, VON STETTEN F. Energy harvesting by implantable abiotically catalyzed glucose fuel cell[J]. J Power Sources, 2008, 182(1): 1-17.
-
[12]
[12] VASSILYEV Y B, KHAZOVA O A, NIKOLAEVA N N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum[J]. J Electroanal Chem, 1985, 196(1): 105-125.
-
[13]
[13] VASSILYEV Y B, KHAZOVA O A, NIKOLAEV A N N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism[J]. J Electroanal Chem, 1985, 196(1): 127-144.
-
[14]
[14] PAUL S, NAIMUDDIN SK, GHOSH A. Electrochemical characterization of Ni-Co and Ni-Co-Fe for oxidation of methyl alcohol fuel with high energetic catalytic surface[J]. J Fuel Chem Technol, 2014, 42(1): 87-95.
-
[15]
[15] ABBADI A, BEKKUM H VAN. Effect of pH in the Pt-catalyzed oxidation of D-glucose to D-gluconic acid[J]. J Mol Catal A: Chem, 1995, 97(2): 111-118.
-
[16]
[16] POPOVIC K D, TRIPCOVIC A V, ADZIC R R. Oxidation of D-glucose in single-crystal platinum electrodes: A mechanistic study[J]. J Electroanal Chem, 1992, 339(1/2): 227-245.
-
[17]
[17] MAO S S, CHEN X B. Selected nanotechnologies for renewable energy applications[J]. Int J Energy Res, 2007, 31(6/7): 619-636.
-
[18]
[18] SPETS J P, LAMPINEN M J, KIROS Y, RANTANEN J, ANTTILA T. Direct glucose fuel cell with the anion exchange membrane in the near-neutral-state electrolyte[J]. Int J Electrochem Sci, 2012, 7: 11696-1705.
-
[19]
[19] BASNAYAKE R, LI Z, LAKSHMI S, ZHOU W, SMOTKIN E S, CASADONTE D J, KORZENIEWSKI C. Pt-Ru nanoparticle electrocatalyst with bulk alloy properties prepared through a sonochemical method[J]. J Am Chem Soc, 2006, 22(25): 10446-10450.
-
[20]
[20] LUO J, NJOKI P, LIN Y, WANG L, MOTT D, ZHONG C. Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen[J]. Electrochem Commun, 2006, 8(4): 581-587.
-
[21]
[21] BOCK C, PAQUET C M, COUILLARD G, BOTTON A, MACDOUGALL B R. Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism[J]. J Am Chem Soc, 2004, 126(25): 8028-8037.
-
[22]
[22] LI L, SCOTT K, YU E H. A direct glucose alkaline fuel cell using MnO2ecarbon nanocomposite supported gold catalyst for anode glucose oxidation[J]. J Power Sources, 2013, 221: 1-5.
-
[23]
[23] PAUL S, GHOSH A. Synthesis and characterization of MnO2 as electrocatalytic energy material for fuel cell electrode[J]. Chem Mater Res, 2014, 6(10): 60-72.
-
[24]
[24] SLAUGHTER G, JOSHUA S. A membraneless single compartment abiotic glucose fuel cell[J]. J Power Sources, 2014, 261: 332-336.
-
[25]
[25] REEVE R W, CHRISTENSEN P A, DICKINSON A J, HAMNETT A, SCOTT K. Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation[J]. Electrochim Acta, 2000, 45(25/26): 4237-4250.
-
[26]
[26] BAEZ V B, PLETCHER D. Preparation and characterization of carbon/titanium dioxide surfacesdthe reduction of oxygen[J]. J Electroanal Chem, 1995, 382(1/2): 59-64.
-
[27]
[27] LU H, ZHENG F, GUO M, ZHANG M. One-step electrodeposition of single-crystal ZnO nanotube arrays and their optical properties[J]. J Alloys Compd, 2014, 588: 217-221.
-
[28]
[28] LU H, ZHENG F, ZHANG M, GUO M. Effects of preparing conditions on controllable one-step electrodeposition of ZnO nanotube arrays[J]. Electrochim Acta, 2014, 132: 370-376.
-
[1]
-
-
-
[1]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[2]
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
-
[3]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[4]
Botao Gao , He Qi , Hui Liu , Jun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598
-
[5]
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
-
[6]
Jiahui Li , Qiao Shi , Ying Xue , Mingde Zheng , Long Liu , Tuoyu Geng , Daoqing Gong , Minmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239
-
[7]
Yue Sun , Yingnan Zhu , Jiahang Si , Ruikang Zhang , Yalan Ji , Jinjie Fan , Yuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012
-
[8]
Feifei Wang , Hang Yao , Xinyue Wu , Yijian Tang , Yang Bai , Hui Chong , Huan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821
-
[9]
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
-
[10]
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911
-
[11]
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
-
[12]
Kai Wang , Yun Wang , Lihang Wang , Zhuhai Li , Xi Yu , Xuanhe You , Diwei Wu , Yueming Song , Jiancheng Zeng , Zongke Zhou , Shishu Huang , Yunfeng Lin . Therapeutic siRNA targeting CC chemokine receptor 2 loaded with tetrahedral framework nucleic acid alleviates neuropathic pain by regulating microglial polarization. Chinese Chemical Letters, 2025, 36(3): 109868-. doi: 10.1016/j.cclet.2024.109868
-
[13]
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
-
[14]
Huiju Cao , Lei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466
-
[15]
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
-
[16]
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
-
[17]
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
-
[18]
Li Li , Zhi-Xin Yan , Chuan-Kun Ran , Yi Liu , Shuo Zhang , Tian-Yu Gao , Long-Fei Dai , Li-Li Liao , Jian-Heng Ye , Da-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104
-
[19]
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
-
[20]
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(404)
- HTML views(53)