Citation: Sujit Kumar Guchhait, Subir Paul. Synthesis and characterization of ZnO-Al2O3 oxides as energetic electro-catalytic material for glucose fuel cell[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(8): 1004-1010. shu

Synthesis and characterization of ZnO-Al2O3 oxides as energetic electro-catalytic material for glucose fuel cell

  • Corresponding author: Sujit Kumar Guchhait,  Subir Paul, 
  • Received Date: 24 March 2015
    Available Online: 24 June 2015

  • One of the thrust areas of research is to find an alternative fuel to meet the increasing demand for energy. Glucose is a good source of alternative fuel for clean energy and is easily available in abundance from both naturally occurring plants and industrial processes. Electrochemical oxidation of glucose in fuel cell requires high electro-catalytic surface of the electrode to produce the clean electrical energy with minimum energy losses in the cell. Pt and Pt based alloys exhibit high electro-catalytic properties but they are expensive. For energy synthesis at economically cheap price, non Pt based inexpensive high electro catalytic material is required. Electro synthesized ZnO-Al2O3 composite is found to exhibit high electro-catalytic properties for glucose oxidation. The Cyclic Voltammetry and Chronoamperometry curves reflect that the material is very much comparable to Pt as far as the maximum current and the steady state current delivered from the glucose oxidation are concerned. XRD image confirms the mixed oxide composite. SEM images morphology show increased 3D surface areas at higher magnification. This attributed high current delivered from electrochemical oxidation of glucose on this electrode surface.
  • 加载中
    1. [1]

      [1] PAUL S, JANA A, MITRA P. Study on bioelectrochemical fuel cell with algae[J]. J Inst Eng (India): Environ Eng Div, 2007, 88: 27-30.

    2. [2]

      [2] PAUL S, MONDAL P. Pyrolysis of forest residue for production of bio fuel[J]. J Int Energy, 2006, 7: 221-225.

    3. [3]

      [3] PAUL S, MONDAL P. Fabrication and characterization of bioelectrochemical fuel cell with pyrolysed produced bio oil and hydrolysed biomass by fermentation[J]. J Inst Eng (India), Part IDGE, 2009, 90: 40-45.

    4. [4]

      [4] PAUL S. Characterization of bioelectrochemical fuel cell fabricated with agriculture wastes and surface modified electrode materials[J]. J Fuel Cell Sci Technol, 2012, 9(2): 021013-9.

    5. [5]

      [5] RAO J R, MILAZZO G M. Blank (Eds.), bioelectrochemistry. I. Biological redox reactions[M]. Plenum Press, New York, 1983: 283-335.

    6. [6]

      [6] RAO M L B, DRAKE R F. Studies of electrooxidation of dextrose in neutral media[J]. J Electrochem Soc, 1969, 116(3): 334-337.

    7. [7]

      [7] JIN C, TANIGUCHI I. Electrocatalytic activity of silver modified gold film for glucose oxidation and its potential application to fuel cells[J]. Mater Lett, 2006, 61(11/12): 2365-2367.

    8. [8]

      [8] BASU D, BASU S. A study on direct glucose and fructose alkaline fuel cell[J]. Electrochima Acta, 2010, 55(20): 5775-5779.

    9. [9]

      [9] KERZENMACHER S, KRäLING U, METZ T, ZENGERLE R, VON STETTEN F. A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability[J]. J Power Sources, 2011, 196(3): 1264-1272.

    10. [10]

      [10] BASU D, BASU S. Synthesis and characterization of Pt-Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell[J]. Int J Hydrogen Energy, 2011, 36(22): 14923-14929.

    11. [11]

      [11] KERZENMACHER S, DUCREE J, ZENGERLE R, VON STETTEN F. Energy harvesting by implantable abiotically catalyzed glucose fuel cell[J]. J Power Sources, 2008, 182(1): 1-17.

    12. [12]

      [12] VASSILYEV Y B, KHAZOVA O A, NIKOLAEVA N N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum[J]. J Electroanal Chem, 1985, 196(1): 105-125.

    13. [13]

      [13] VASSILYEV Y B, KHAZOVA O A, NIKOLAEV A N N. Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism[J]. J Electroanal Chem, 1985, 196(1): 127-144.

    14. [14]

      [14] PAUL S, NAIMUDDIN SK, GHOSH A. Electrochemical characterization of Ni-Co and Ni-Co-Fe for oxidation of methyl alcohol fuel with high energetic catalytic surface[J]. J Fuel Chem Technol, 2014, 42(1): 87-95.

    15. [15]

      [15] ABBADI A, BEKKUM H VAN. Effect of pH in the Pt-catalyzed oxidation of D-glucose to D-gluconic acid[J]. J Mol Catal A: Chem, 1995, 97(2): 111-118.

    16. [16]

      [16] POPOVIC K D, TRIPCOVIC A V, ADZIC R R. Oxidation of D-glucose in single-crystal platinum electrodes: A mechanistic study[J]. J Electroanal Chem, 1992, 339(1/2): 227-245.

    17. [17]

      [17] MAO S S, CHEN X B. Selected nanotechnologies for renewable energy applications[J]. Int J Energy Res, 2007, 31(6/7): 619-636.

    18. [18]

      [18] SPETS J P, LAMPINEN M J, KIROS Y, RANTANEN J, ANTTILA T. Direct glucose fuel cell with the anion exchange membrane in the near-neutral-state electrolyte[J]. Int J Electrochem Sci, 2012, 7: 11696-1705.

    19. [19]

      [19] BASNAYAKE R, LI Z, LAKSHMI S, ZHOU W, SMOTKIN E S, CASADONTE D J, KORZENIEWSKI C. Pt-Ru nanoparticle electrocatalyst with bulk alloy properties prepared through a sonochemical method[J]. J Am Chem Soc, 2006, 22(25): 10446-10450.

    20. [20]

      [20] LUO J, NJOKI P, LIN Y, WANG L, MOTT D, ZHONG C. Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen[J]. Electrochem Commun, 2006, 8(4): 581-587.

    21. [21]

      [21] BOCK C, PAQUET C M, COUILLARD G, BOTTON A, MACDOUGALL B R. Size-selected synthesis of PtRu nano-catalysts: Reaction and size control mechanism[J]. J Am Chem Soc, 2004, 126(25): 8028-8037.

    22. [22]

      [22] LI L, SCOTT K, YU E H. A direct glucose alkaline fuel cell using MnO2ecarbon nanocomposite supported gold catalyst for anode glucose oxidation[J]. J Power Sources, 2013, 221: 1-5.

    23. [23]

      [23] PAUL S, GHOSH A. Synthesis and characterization of MnO2 as electrocatalytic energy material for fuel cell electrode[J]. Chem Mater Res, 2014, 6(10): 60-72.

    24. [24]

      [24] SLAUGHTER G, JOSHUA S. A membraneless single compartment abiotic glucose fuel cell[J]. J Power Sources, 2014, 261: 332-336.

    25. [25]

      [25] REEVE R W, CHRISTENSEN P A, DICKINSON A J, HAMNETT A, SCOTT K. Methanol-tolerant oxygen reduction catalysts based on transition metal sulfides and their application to the study of methanol permeation[J]. Electrochim Acta, 2000, 45(25/26): 4237-4250.

    26. [26]

      [26] BAEZ V B, PLETCHER D. Preparation and characterization of carbon/titanium dioxide surfacesdthe reduction of oxygen[J]. J Electroanal Chem, 1995, 382(1/2): 59-64.

    27. [27]

      [27] LU H, ZHENG F, GUO M, ZHANG M. One-step electrodeposition of single-crystal ZnO nanotube arrays and their optical properties[J]. J Alloys Compd, 2014, 588: 217-221.

    28. [28]

      [28] LU H, ZHENG F, ZHANG M, GUO M. Effects of preparing conditions on controllable one-step electrodeposition of ZnO nanotube arrays[J]. Electrochim Acta, 2014, 132: 370-376.

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    3. [3]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    4. [4]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    5. [5]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    6. [6]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    7. [7]

      Yue SunYingnan ZhuJiahang SiRuikang ZhangYalan JiJinjie FanYuze Dong . Glucose-activated nanozyme hydrogels for microenvironment modulation via cascade reaction in diabetic wound. Chinese Chemical Letters, 2025, 36(4): 110012-. doi: 10.1016/j.cclet.2024.110012

    8. [8]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    9. [9]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    10. [10]

      Kezuo DiJie WeiLijun DingZhiying ShaoJunling ShaXilong ZhouHuadong HengXujing FengKun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911

    11. [11]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    12. [12]

      Kai WangYun WangLihang WangZhuhai LiXi YuXuanhe YouDiwei WuYueming SongJiancheng ZengZongke ZhouShishu HuangYunfeng Lin . Therapeutic siRNA targeting CC chemokine receptor 2 loaded with tetrahedral framework nucleic acid alleviates neuropathic pain by regulating microglial polarization. Chinese Chemical Letters, 2025, 36(3): 109868-. doi: 10.1016/j.cclet.2024.109868

    13. [13]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    14. [14]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    15. [15]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    16. [16]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    17. [17]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    18. [18]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    19. [19]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    20. [20]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

Metrics
  • PDF Downloads(0)
  • Abstract views(404)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return