Citation:
MO Wen-long, MA Feng-yun. Performance of Au/HZSM-5 catalysts for the isomerization reaction of n-butane[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(8): 980-989.
-
The activity and selectivity to isomerization of pure n-butane and mixed butane (with different proportions of iso-butane) of Au/HZSM-5 catalysts were evaluated using a micro-scale pulse reactor. Results showed that the conversion of pure n-butane was above 7.0% and the selectivity to iso-butane could be as high as 80% on Au/HZSM-5 catalysts with 1.31% Au loading at 300℃. By contrast, the conversion of n-butane and the selectivity to iso-butane was only 0.55% and 11.67% on the HZSM-5 supporter. The conversion of n-butane increased firstly and then decreased with the increase of Au loading at a range of 0.12%~1.91%. The selectivity to iso-butane increased with increase of Au loading apparently when Au loading was at a low level. When reaction temperature was lower than 400℃, the main reaction on Au/HZSM-5 catalyst was isomerization of pure n-butane. When the temperature was higher than 400℃, the main reactions were dissociation and aromatization. 400℃ was the watershed of dissociation and aromatization under the reaction conditions of micro-scale pulse reaction. Additionally, the composition of mixed butane had certainly influence on the isomerization reaction of n-butane. But the products in the isomerization reaction of n-butane were very rare at proper reaction temperature, showing a metal-acid bifunctional catalytic character. The species of Au+ possibly played an important role in the dehydrogenation and hydrogenation reactions.
-
Keywords:
- Au/HZSM-5,
- catalyst,
- n-butane,
- isomerization
-
-
-
[1]
[1] BOND G C, THOMSON D T. Catalysis by gold[J]. Catal Rev Sci Eng, 1999, 41(3): 319-388.
-
[2]
[2] BOND G C, SERMON P A. Gold catalysts for olefin hydrogenation[J]. Gold Bulletin, 1973, 4(6): 102-105.
-
[3]
[3] CHA D Y, PARRAVANO G. Surface reactivity of supported gold: I. Oxygen transfer between CO and CO2[J]. J Catal, 1970, 18(2): 200-221.
-
[4]
[4] PU S B, INUI T. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2, 7-dimethylphthalene isomerization[J]. Zeolites, 1996, 17(4): 334-339.
-
[5]
[5] LU J Y, ZHAO Z, XU C M, ZHANG P, DUAN A J. FeHZSM-5 molecular sieves-Highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene[J]. Catal Commun, 2006, 7(4): 199-203.
-
[6]
[6] ZHU X X, LIU S L, SONG Y Q, XIE S J, XU L Y. Catalytic cracking of 1-butene to propene and ethene on MCM-22 zeolite[J]. Appl Catal A: Gen, 2005, 290(1/2): 191-199.
-
[7]
[7] ZHU X X, LIU S L, SONG Y Q, XU L Y. Butene catalytic cracking to propene and ethene over potassium modified ZSM-5 catalysts[J]. Catal Lett, 2005, 103(3/4): 201-210.
-
[8]
[8] TRAVERS C, ESSAYEM N, DELAGE M. Heteropolyanions based catalysts for paraffins isomerization[J]. Catal Today, 2001, 65(2/4): 355-361.
-
[9]
[9] YOUNG C L O, BROWNE J E, MATTEO J F, SAWICKI R A, HAZEN J. Skeletal isomerization of n-butylenes to isobutylene on zeolites: US, USP5198597. 1993.
-
[10]
[10] GNEP N S, DOYEMET J Y. Conversion of light alkanes into aromatic hydrocarbons: Dehydrocyclodimerization of propane on PtHZSM-5 catalysts[J]. Appl Catal A: Gen, 1987, 35: 93-108.
-
[11]
[11] RIBEIRO F, MARCILLY C, GUISNET M. Hydroisomerization of n-hexane on platinum zeolites: II.Comparison between the reaction mechanisms on platinum/Y-zeolite and on platinum/mordenite[J]. J Catal, 1982,78(2): 275-280.
-
[12]
[12] SACHTLER W M H. Catalytic isomerization over metal, acid and hybridsites[J]. Stud Surf Sci Catal, 1998, 113: 41-54.
-
[13]
[13] TABORA J E, DAVIS R J. The role of transition metal promoters on sulfated zirconia catalysts for low-temperature butane isomerization[J]. J Catal, 1996, 162(1): 125-133.
-
[14]
[14] ALMANZA L O, NARBESHUBER T, ARAUJO P D. On the influence of the mordenite acidity in the hydroconversion of linear alkanes over Pt-mordenite catalysts[J]. Appl Catal A: Gen, 1999, 178(1): 39-47.
-
[15]
[15] BABURKEK E, NOVAKOVA J. Effect of platinum in bifunctional isomerization of n-butane over acid zeolites[J]. Appl Catal A: Gen, 2000, 190(1/2): 241-251.
-
[16]
[16] LIU J X, LIANG C C, XU R F, LIU G D, CHANG X S, GUO H C. Effect of ion-impregnation treatment on the transformation of C4 LPG over modified nano-sized HZSM-5 zeolite[J]. J Mol Catal, 2010, 24(3): 208-216.
-
[17]
[17] NANZAD U, BAO A, BAO S, BAO S, XU A J, ZHAORIGETU B. The study on preparation, characterization of mesoporous Au/NiO catalysts and their spectral properties[J]. J Mol Catal, 2013, (1): 30-36.
-
[18]
[18] HARUTA M, KOBAYASHI T, SANO H, YAMADA N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃[J]. Chem Lett, 1987, (2): 405-408.
-
[19]
[19] HARUTA M, KAGEYAMA H, KAMIJO N, DELANNAY F. Fine structure of novel gold catalysts prepared by coprecipitation[J]. Stud Surf Sci Catal, 1988, 44: 32-42.
-
[20]
[20] HARUTA M, YAMADA N, KOBAYASHI T, LIJIMA S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal, 1989, 115(2): 301-309.
-
[21]
[21] QIU S L, PANG W Q, XU W G, XU R R. Gold carbonyls and nitrosyls in highly dispersed Au (I) on zeolite NaY and ZSM-5[J]. Stud Surf Sci Catal, 1994, 84: 1059-1066.
-
[22]
[22] NULAHONG A, LIU J X, ZHAO W P, WANG G R, GUO H C. Aromatization of n-butane and i-butane over Modified nano- HZSM-5 catalyst[J]. J Mol Catal, 2012, 26(3): 257-264.
-
[23]
[23] YOSHIO O, KUNIHIKO K. Transformations of butanes over ZSM-5 zeolites part I-Mechanism of cracking of butanes over HZSM-5[J]. J Chem Soc, 1991, 87(4): 663-667.
-
[24]
[24] STEPANOV A G, ARZUMANOV S S, GABRIENKO A A, PARMON V N, IVANOVA II, FREUDE D. Significant influence of Zn on activation of the C-H bonds of small alkanes by Bronsted acid sites of zeolite[J]. Chem Phys Chem, 2008, 9: 2559-2563.
-
[25]
[25] GUISNET M, GNEP N S, AITTABLEB D, DOYEMET Y J. Conversion of light alkanes into aromatic hydrocarbons:VI. Aromatization of C2-C4 alkanes on HZSM-5-reaction mechanisms[J]. Appl Catal A: Gen, 1992, 87(2): 255-270.
-
[26]
[26] HARUTA M. Gold as novel catalyst in the 21st century[J].Gold Bull, 2004, 37(1/2): 27-37.
-
[27]
[27] PIRNGRUBER G D, SESHAN K, LERCHER J A. Dehydroisomerization of n-butane over Pt-ZSM5 (I): Effect of the metal loading and acid site concentration[J]. J Catal, 1999, 186(1): 188-200.
-
[28]
[28] ZANELLA R, GIOGIO S, SHIN C H, HENRY C R, LOUIS C. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea[J]. J Catal, 2004, 222(2): 357-367.
-
[29]
[29] PARK M S, WANG G X, KANG Y M, KIM S Y, LIU H K, DOU S X. Mesoporous organo-silica nanoarray for energy storage media[J]. Electrochem Commun, 2007, 9(1):71-75.
-
[1]
-
-
-
[1]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[2]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[5]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[6]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[7]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[8]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[9]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
-
[10]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[13]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[14]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[16]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[17]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[18]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[19]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[20]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(435)
- HTML views(21)