Citation:
CAO Xiao-feng, ZHANG Qi, JIANG Dong, LIU Qi-ying, MA Long-long, WANG Tie-jun, LI De-bao. Influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(8): 970-979.
-
Nanorod-shaped La(OH)3 support was prepared by hydrothermal method, over which the supported Ni/La(III) catalysts were obtained through wet impregnation method; the influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols was then investigated by means of XRD, SEM/EDS, BET, H2-TPR-MS, CO/CO2-TPD-MS, ICP-AES and TG. The results revealed that the Ni/La(III) catalysts are highly active for sorbitol hydrogenolysis; the yield of low-carbon glycols reaches 53% after reaction at 220℃ and 4 MPa H2 for 1.5 h. The catalyst calcined at low temperature (500℃) is mainly in the form of NiO/La2O2CO3, which may transform into La2NiO4-La2O3 with the increase of calcination temperature. The basicity is a crucial factor for the hydrogenolysis activity; high calcionation temperature may enhance the basicity of the catalysts and then improve their hydrogenolysis activity, whereas the calcination temperature has little effect on the products selectivity. However, NiO/La2O2CO3 exhibits better hydrothermal stability than La2NiO4-La2O3 for sorbitol hydrogenolysis. The deactivation of catalysts can be attributed to the separation of active Ni particles from the support and the agglomeration of the active species, which may reduce the amount of the active metal sites and destroy the catalyst structure.
-
Keywords:
- sorbitol,
- hydrogenolysis,
- low-carbon glycols,
- calcination temperature,
- La2O2CO3
-
-
-
[1]
[1] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098.
-
[2]
[2] The Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL). Top value added chemicals from biomass[Z]. 2004.
-
[3]
[3] CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502.
-
[4]
[4] KOBAYASHI H, HOSAKA Y, HARA K, FENG B, HIROSAKI Y, FUKUOKA A. Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose[J]. Green Chem, 2014, 16(2): 637-644.
-
[5]
[5] JIN X, JESSICA L, BALA S, REN S Q, RAGHUNATH V C. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals[J]. ACS Nano, 2012, 7(2): 1309-1316.
-
[6]
[6] AGNIESZKA M R, KAMIL W, REGINA P. Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals[J]. Angew Chem, 2012, 51(11): 2564-2601.
-
[7]
[7] 马继平, 于维强, 王敏, 贾秀全, 路芳, 徐杰. 催化选择转化多羟基化合物制备商附加值化学品研究进展[J]. 催化学报, 2013, 34(3): 492-507. (MA Ji-ping, YU Wei-qing, WANG Min, JIA Xiu-quan, LU Fang, XU Jie. Advances in selective catalytic transformation of ployols to value-added chemicals[J]. Chin J Catal, 2013, 34(3): 492-507.)
-
[8]
[8] 刘琪英, 廖玉河, 石宁, 王铁军, 马隆龙, 张琦. 生物质多元醇选择性催化氢解制小分子二元醇研究进展[J]. 化工进展, 2013, 32(5): 1035-1042. (LIU Qi-ying, LIAO Yu-he, SHI Ning, WANG Tie-jun, MA Long-long, ZHANG Qi. A review on small molecular diols production by catalytic hydrogenolysis of biomass derived polyols[J]. Chem Ind Eng Prog, 2013, 32(5): 1035-1042.)
-
[9]
[9] KEYI W, MARTIN C H, TODD D F. Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds[J]. Ind Eng Chem Res, 1995, 34(11): 3766-3771.
-
[10]
[10] SOHOUNLOUE D K, MONTASSIER C, BARBIER J. Catalytic hydrogenolysis of sorbitol[J]. React Kinet Catal Lett, 1983, 22(3/4): 391-397.
-
[11]
[11] BANU M, SIVASANKER S, SANKARANARAYANAN T M, VENUVANALINGAM P. Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY[J]. Catal Commun, 2011, 12(7): 673-677.
-
[12]
[12] BANU M, VENUVANALINGAM P, SHANMUGAM R, VISWANATHAN B, SIVASANKER S. Sorbitol hydrogenolysis over Ni, Pt and Ru supported on NaY[J]. Top Catal, 2012, 5511/13): 897-907.
-
[13]
[13] ZHAO L, ZHOU J H, SUI Z J, ZHOU X G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst[J]. Chem Eng Sci, 2010, 65(1): 30-35.
-
[14]
[14] ZHAO L, ZHOU J H, CHEN H, ZHANG M G, SUI Z J, ZHOU X G. Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: Effect of calcination[J]. Korean J Chem Eng, 2010, 27(5): 1412-1418.
-
[15]
[15] ZHOU J H, ZHANG M G, ZHAO L, ZHOU J H. Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol[J]. Catal Today, 2009, 147(S): 225-229.
-
[16]
[16] CHEN X G, WANG X C, YAO S X, MU X D. Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts [J]. Catal Commun, 2013, 39(5): 86-89.
-
[17]
[17] HUANG Z W, CHEN J, JIA Y Q, LIU H L, XIA C G, LIU H C. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over copper catalysts[J]. Appl Catal B: Environ, 2014, 147: 377-386.
-
[18]
[18] SUN J Y, LIU H C. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J]. Catal Today, 2014, 234: 75-82.
-
[19]
[19] LIU H L, HUANG Z W, XIA C G, JIA Y Q, CHEN J, LIU H C. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over silica dispersed copper catalysts prepared by a precipitation-gel method[J]. ChemCatChem, 2014, 10(6): 2918-2928.
-
[20]
[20] SUN H, DING Y Q, DUAN J Z, ZHANG Q J, WANG Z Y, LOU H, ZHENG X M Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst[J]. Bioresour Technol, 2010, 101(3): 953-958.
-
[21]
[21] YANG G X, YU H, HUANG X Y, PENG F, WANG H J. Effect of calcium dopant on catalysis of Ir/La2O3 for hydrogen production by oxidative steam reforming of glycerol[J]. Appl Catal B: Environ, 2012, 127: 89-98.
-
[22]
[22] ROELOFS J C A A, LENSVELD D J, DILLEN A J, JONG K P. On the structure of activated hydrotalcites as solid base catalysts for liquid-phase aldol condensation[J]. J Catal, 2001, 203(1): 184-191.
-
[23]
[23] GAO J, HOU Z Y, GUO J Z, ZHU Y H, ZHENG X M. Catalytic conversion of methane and CO2 to synthesis gas over a La2O3-modified SiO2 supported Ni catalyst in fluidized-bed reactor[J]. Catal Today, 2008, 131(1/4): 278-284.
-
[24]
[24] COSTA C N, ANASTASIADOU T, EFSTATHIOU A M. The selective catalytic reduction of nitric oxide with methane over La2O3-CaO systems: Synergistic effects and surface reactivity studies of NO, CH4, O2, and CO2 by transient techniques[J]. J Catal, 2000, 194(2): 250-265.
-
[25]
[25] MUHAMMAD B I C, MOHAMMAD M. H, PAUL A C. Effect of supercritical water gasification treatment on Ni/La2O3-Al2O3-based catalysts[J]. Appl Catal A: Gen, 2011, 405: 84-92.
-
[26]
[26] MU Q T, WANG Y D. Synthesis, characterization, shape-preserved transformation, and optical properties of La(OH)3, La2O2CO3, and La2O3 nanorods[J]. J Alloy Comp, 2011, 509(2): 396-401.
-
[27]
[27] WANG F, SHI R J, LIU Z Q, SHANG P J, PANG X Y, SHEN S, FENG Z C, LI C, SHEN W J. Highly efficient dehydrogenation of primary aliphatic alcohols catalyzed by Cu nanoparticles dispersed on rod-shaped La2O2CO3[J]. ACS Catal, 2013, 3(5): 890-894.
-
[28]
[28] ZHANG X H, WANG T J, MA L L, ZHANG Q, YU Y X, LIU Q Y. Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2-SiO2 for guaiacol hydrodeoxygenation[J]. Catal Commun, 2012, 33: 15-19.
-
[29]
[29] RACHA A, TOMOO M, TAKATO M, KOICHIRO J, KIYOTOMY K. Highly selective hydrogenolysis of glycerol to 1, 3-propanediol over a boehmite-supported platinum/tungsten catalyst[J]. ChemSusChem, 2013, 6(8): 1345-1347.
-
[30]
[30] SUN C W, XIAO G L, LI H, CHEN L Q. Mesoscale organization of flower-Like La2O2CO3 and La2O3 microspheres[J]. J Am Cera Soc, 2007, 90(8): 2573-2581.
-
[31]
[31] SUN R Y, WANG T T, ZHENG M Y, DENG W Q, PANG J F, WANG A Q, WANG X D, ZHANG T. Versatile nickel-lanthanum(III) catalyst for direct conversion of cellulose to glycols[J]. ACS Catal, 2015, 5: 874-883.
-
[1]
-
-
-
[1]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[2]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[3]
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
-
[4]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[5]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[6]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[7]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[8]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Mingxin LU , Liyang ZHOU , Xiaoyu XU , Xiaoying FENG , Hui WANG , Bin YAN , Jie XU , Chao CHEN , Hui MEI , Feng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206
-
[11]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[12]
Xinhao Yan , Guoliang Hu , Ruixi Chen , Hongyu Liu , Qizhi Yao , Jiao Li , Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073
-
[13]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[14]
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
-
[15]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[16]
Yiling Wu , Peiyao Jin , Shenyue Tian , Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034
-
[17]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[18]
Yang Chen , Xiuying Wang , Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184
-
[19]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012
-
[20]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(502)
- HTML views(26)