Citation: CAO Xiao-feng, ZHANG Qi, JIANG Dong, LIU Qi-ying, MA Long-long, WANG Tie-jun, LI De-bao. Influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(8): 970-979. shu

Influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols

  • Corresponding author: JIANG Dong,  LIU Qi-ying, 
  • Received Date: 26 January 2015
    Available Online: 23 March 2015

    Fund Project: 国家自然科学基金(51376185) (51376185)国家重点基础研究发展规划(973计划,2012CB215304) (973计划,2012CB215304)国家高技术研究发展计划(863计划,2012AA101806) (863计划,2012AA101806)广东省自然科学基金(S2013010011612)。 (S2013010011612)

  • Nanorod-shaped La(OH)3 support was prepared by hydrothermal method, over which the supported Ni/La(III) catalysts were obtained through wet impregnation method; the influence of calcination temperature on the performance of Ni/La(III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols was then investigated by means of XRD, SEM/EDS, BET, H2-TPR-MS, CO/CO2-TPD-MS, ICP-AES and TG. The results revealed that the Ni/La(III) catalysts are highly active for sorbitol hydrogenolysis; the yield of low-carbon glycols reaches 53% after reaction at 220℃ and 4 MPa H2 for 1.5 h. The catalyst calcined at low temperature (500℃) is mainly in the form of NiO/La2O2CO3, which may transform into La2NiO4-La2O3 with the increase of calcination temperature. The basicity is a crucial factor for the hydrogenolysis activity; high calcionation temperature may enhance the basicity of the catalysts and then improve their hydrogenolysis activity, whereas the calcination temperature has little effect on the products selectivity. However, NiO/La2O2CO3 exhibits better hydrothermal stability than La2NiO4-La2O3 for sorbitol hydrogenolysis. The deactivation of catalysts can be attributed to the separation of active Ni particles from the support and the agglomeration of the active species, which may reduce the amount of the active metal sites and destroy the catalyst structure.
  • 加载中
    1. [1]

      [1] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006, 106(9): 4044-4098.

    2. [2]

      [2] The Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL). Top value added chemicals from biomass[Z]. 2004.

    3. [3]

      [3] CORMA A, IBORRA S, VELTY A. Chemical routes for the transformation of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502.

    4. [4]

      [4] KOBAYASHI H, HOSAKA Y, HARA K, FENG B, HIROSAKI Y, FUKUOKA A. Control of selectivity, activity and durability of simple supported nickel catalysts for hydrolytic hydrogenation of cellulose[J]. Green Chem, 2014, 16(2): 637-644.

    5. [5]

      [5] JIN X, JESSICA L, BALA S, REN S Q, RAGHUNATH V C. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals[J]. ACS Nano, 2012, 7(2): 1309-1316.

    6. [6]

      [6] AGNIESZKA M R, KAMIL W, REGINA P. Hydrogenolysis goes bio: From carbohydrates and sugar alcohols to platform chemicals[J]. Angew Chem, 2012, 51(11): 2564-2601.

    7. [7]

      [7] 马继平, 于维强, 王敏, 贾秀全, 路芳, 徐杰. 催化选择转化多羟基化合物制备商附加值化学品研究进展[J]. 催化学报, 2013, 34(3): 492-507. (MA Ji-ping, YU Wei-qing, WANG Min, JIA Xiu-quan, LU Fang, XU Jie. Advances in selective catalytic transformation of ployols to value-added chemicals[J]. Chin J Catal, 2013, 34(3): 492-507.)

    8. [8]

      [8] 刘琪英, 廖玉河, 石宁, 王铁军, 马隆龙, 张琦. 生物质多元醇选择性催化氢解制小分子二元醇研究进展[J]. 化工进展, 2013, 32(5): 1035-1042. (LIU Qi-ying, LIAO Yu-he, SHI Ning, WANG Tie-jun, MA Long-long, ZHANG Qi. A review on small molecular diols production by catalytic hydrogenolysis of biomass derived polyols[J]. Chem Ind Eng Prog, 2013, 32(5): 1035-1042.)

    9. [9]

      [9] KEYI W, MARTIN C H, TODD D F. Mechanism study of sugar and sugar alcohol hydrogenolysis using 1,3-diol model compounds[J]. Ind Eng Chem Res, 1995, 34(11): 3766-3771.

    10. [10]

      [10] SOHOUNLOUE D K, MONTASSIER C, BARBIER J. Catalytic hydrogenolysis of sorbitol[J]. React Kinet Catal Lett, 1983, 22(3/4): 391-397.

    11. [11]

      [11] BANU M, SIVASANKER S, SANKARANARAYANAN T M, VENUVANALINGAM P. Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY[J]. Catal Commun, 2011, 12(7): 673-677.

    12. [12]

      [12] BANU M, VENUVANALINGAM P, SHANMUGAM R, VISWANATHAN B, SIVASANKER S. Sorbitol hydrogenolysis over Ni, Pt and Ru supported on NaY[J]. Top Catal, 2012, 5511/13): 897-907.

    13. [13]

      [13] ZHAO L, ZHOU J H, SUI Z J, ZHOU X G. Hydrogenolysis of sorbitol to glycols over carbon nanofiber supported ruthenium catalyst[J]. Chem Eng Sci, 2010, 65(1): 30-35.

    14. [14]

      [14] ZHAO L, ZHOU J H, CHEN H, ZHANG M G, SUI Z J, ZHOU X G. Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: Effect of calcination[J]. Korean J Chem Eng, 2010, 27(5): 1412-1418.

    15. [15]

      [15] ZHOU J H, ZHANG M G, ZHAO L, ZHOU J H. Carbon nanofiber/graphite-felt composite supported Ru catalysts for hydrogenolysis of sorbitol[J]. Catal Today, 2009, 147(S): 225-229.

    16. [16]

      [16] CHEN X G, WANG X C, YAO S X, MU X D. Hydrogenolysis of biomass-derived sorbitol to glycols and glycerol over Ni-MgO catalysts [J]. Catal Commun, 2013, 39(5): 86-89.

    17. [17]

      [17] HUANG Z W, CHEN J, JIA Y Q, LIU H L, XIA C G, LIU H C. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over copper catalysts[J]. Appl Catal B: Environ, 2014, 147: 377-386.

    18. [18]

      [18] SUN J Y, LIU H C. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J]. Catal Today, 2014, 234: 75-82.

    19. [19]

      [19] LIU H L, HUANG Z W, XIA C G, JIA Y Q, CHEN J, LIU H C. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over silica dispersed copper catalysts prepared by a precipitation-gel method[J]. ChemCatChem, 2014, 10(6): 2918-2928.

    20. [20]

      [20] SUN H, DING Y Q, DUAN J Z, ZHANG Q J, WANG Z Y, LOU H, ZHENG X M Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst[J]. Bioresour Technol, 2010, 101(3): 953-958.

    21. [21]

      [21] YANG G X, YU H, HUANG X Y, PENG F, WANG H J. Effect of calcium dopant on catalysis of Ir/La2O3 for hydrogen production by oxidative steam reforming of glycerol[J]. Appl Catal B: Environ, 2012, 127: 89-98.

    22. [22]

      [22] ROELOFS J C A A, LENSVELD D J, DILLEN A J, JONG K P. On the structure of activated hydrotalcites as solid base catalysts for liquid-phase aldol condensation[J]. J Catal, 2001, 203(1): 184-191.

    23. [23]

      [23] GAO J, HOU Z Y, GUO J Z, ZHU Y H, ZHENG X M. Catalytic conversion of methane and CO2 to synthesis gas over a La2O3-modified SiO2 supported Ni catalyst in fluidized-bed reactor[J]. Catal Today, 2008, 131(1/4): 278-284.

    24. [24]

      [24] COSTA C N, ANASTASIADOU T, EFSTATHIOU A M. The selective catalytic reduction of nitric oxide with methane over La2O3-CaO systems: Synergistic effects and surface reactivity studies of NO, CH4, O2, and CO2 by transient techniques[J]. J Catal, 2000, 194(2): 250-265.

    25. [25]

      [25] MUHAMMAD B I C, MOHAMMAD M. H, PAUL A C. Effect of supercritical water gasification treatment on Ni/La2O3-Al2O3-based catalysts[J]. Appl Catal A: Gen, 2011, 405: 84-92.

    26. [26]

      [26] MU Q T, WANG Y D. Synthesis, characterization, shape-preserved transformation, and optical properties of La(OH)3, La2O2CO3, and La2O3 nanorods[J]. J Alloy Comp, 2011, 509(2): 396-401.

    27. [27]

      [27] WANG F, SHI R J, LIU Z Q, SHANG P J, PANG X Y, SHEN S, FENG Z C, LI C, SHEN W J. Highly efficient dehydrogenation of primary aliphatic alcohols catalyzed by Cu nanoparticles dispersed on rod-shaped La2O2CO3[J]. ACS Catal, 2013, 3(5): 890-894.

    28. [28]

      [28] ZHANG X H, WANG T J, MA L L, ZHANG Q, YU Y X, LIU Q Y. Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2-SiO2 for guaiacol hydrodeoxygenation[J]. Catal Commun, 2012, 33: 15-19.

    29. [29]

      [29] RACHA A, TOMOO M, TAKATO M, KOICHIRO J, KIYOTOMY K. Highly selective hydrogenolysis of glycerol to 1, 3-propanediol over a boehmite-supported platinum/tungsten catalyst[J]. ChemSusChem, 2013, 6(8): 1345-1347.

    30. [30]

      [30] SUN C W, XIAO G L, LI H, CHEN L Q. Mesoscale organization of flower-Like La2O2CO3 and La2O3 microspheres[J]. J Am Cera Soc, 2007, 90(8): 2573-2581.

    31. [31]

      [31] SUN R Y, WANG T T, ZHENG M Y, DENG W Q, PANG J F, WANG A Q, WANG X D, ZHANG T. Versatile nickel-lanthanum(III) catalyst for direct conversion of cellulose to glycols[J]. ACS Catal, 2015, 5: 874-883.

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    9. [9]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    10. [10]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    11. [11]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    12. [12]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    13. [13]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    16. [16]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(0)
  • Abstract views(487)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return