Citation: LIU Ru-ling, ZHU Hua-qing, WU Zhi-wei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Aromatization of propane over Ga-modified ZSM-5 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(8): 961-969. shu

Aromatization of propane over Ga-modified ZSM-5 catalysts

  • Corresponding author: ZHU Hua-qing,  WANG Jian-guo, 
  • Received Date: 31 March 2015
    Available Online: 12 May 2015

    Fund Project: 国家自然科学基金(21273264) (21273264)国家重点基础研究发展规划(973计划,2011CB201403,2011CB201406)。 (973计划,2011CB201403,2011CB201406)

  • H-ZSM-5 was modified with gallium by the ion-exchange method and characterized with XRD, SEM, BET, NH3-TPD, Py-IR, ICP, and XPS techniques. The influences of the Si/Al mol ratios and the pretreatment conditions of the Ga-modified ZSM-5 ((Ga-H)-ZSM-5) on their acidity, gallium species state, and aromatization performance of propane were investigated. It was found that the Si/Al mol ratio had significant effects on the catalyst acidity and the interaction of non-framework Ga species with zeolite, and hence, the catalytic activity and selectivity for propane aromatization. At 550℃ and WHSV of 1.0h-1, (Ga,H)-ZSM-5 with a Si/Al mol ratio of 30 showed the highest catalytic activity. It was shown that Ga species improved the aromatics selectivity and inhibited cracking reactions. After being reduced in hydrogen, Ga2O3 was most likely transformed into Ga+ and GaH+2 species, and migrated into the zeolite channels. Subsequent air-oxidation treatment of the reduced (Ga,H)-ZSM-5 led to formation of GaO+ species, thus greatly increasing the aromatization activity.
  • 加载中
    1. [1]

      [1] ONO Y. Transformation of lower alkanes into aromatic hydrocarbons over ZSM-5 zeolites[J]. Catal Rev: Sci Eng, 1992, 34(3): 179-226.

    2. [2]

      [2] DEHERTOG W J H, FROMEN G F. A catalytic route for aromatics production from LPG[J]. Appl Catal A: Gen, 1999, 189(1): 63-75.

    3. [3]

      [3] BHAN A, DELGASS W N. Propane aromatization over HZSM-5 and Ga/HZSM-5 catalysts[J]. Catal Rev: Sci Eng, 2008, 50(1): 19-151.

    4. [4]

      [4] CHOUDHARY V R, KINAGE A K, SIVADINARAYANA C, GUISNET M. Pulse reaction studies on variations of initial activity/selectivity of O2 and H2 pretreated Ga-modified ZSM-5 type zeolite catalysts in propane aromatization[J]. J Catal, 1996, 158(1): 23-33.

    5. [5]

      [5] CHOUDHARY T V, KINAGA A, BANERJEE S, CHOUDHARY V R. Influence of Si/Ga and Si/Al ratios on propane aromatization over highly active H-GaAlMFI[J].Catal Comm, 2006, 7(3): 166-169.

    6. [6]

      [6] GUISNET M, GNEP N S. Aromatization of short chain alkanes on zeolite catalysts[J]. Appl Catal A: Gen, 1992, 89(1): 1-30.

    7. [7]

      [7] NOWAK I, QUARTARARO J, DEROUANE E G, VEDRINE J C. Effect of H2-O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts[J]. Appl Catal A: Gen, 2003, 251(1): 107-120.

    8. [8]

      [8] ANUNZIATA O A, PIERELLA L B. Nature of the active sites in H-ZSM-11zeolite modified with Zn(2+) and Ga(3+)[J]. Catal Lett, 1993, 19(2/3): 143-151.

    9. [9]

      [9] 苗青, 董梅, 牛宪军, 王浩, 樊卫斌, 王建国, 秦张峰. 含镓ZSM-5 分子筛的制备及其在甲醇芳构化反应中的催化性能[J]. 燃料化学学报, 2012, 40(10): 1230-1238. (MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM- 5 molecular sieves and their catalytic performance in methanol aromatization[J]. J Fuel Chem Technol, 2012, 40(10): 1230-1238.)

    10. [10]

      [10] DOOLEY K M, CHANG C, PRICE G L. Effects of pretreatments on state of gallium and aromatization activity of gallium/ZSM-5 catalysts[J]. Appl Catal A: Gen, 1992, 84(1): 17-30.

    11. [11]

      [11] PRICE G L, KANAZIREV V. Ga2O3/HZSM-5 propane aromatization catalysts: Formation of active centers via solid-state reaction[J]. J Catal, 1990, 126(1): 267-278.

    12. [12]

      [12] MADEIRA F F, TAYEB K B, PINARD L, VEZIN H, MAURY S, CADRAN N. Ethanol transformation into hydrocarbons on ZSM-5 zeolites: Influence of Si/Al ratio on catalytic performances and deactivation rate. Study of the radical species role[J]. Appl Catal A: Gen, 2012, 443-444: 171-180.

    13. [13]

      [13] 朱华青, 翟效珍, 王建国. 第二组分改性Ga/HZSM-5催化剂芳构化性能研究[J]. 燃料化学学报, 1999, 27(S): 74-78. (ZHU Hua-qing, ZHAI Xiao-zhen, WANG Jian-guo. Study on aromatization over Ga/HZSM-5 catalysts modified by second components[J]. J Fuel Chem Technol, 1999, 27(S): 74-78.)

    14. [14]

      [14] CHOUDHARY V R, MANTRI K, SIVADINARAYANA C. Influence of zeolite factors affecting zeolitic acidity on the propane aromatization activity and selectivity of Ga/H-ZSM-5[J]. Microporous Mesoporous Mater, 2000, 37(1/2): 1-8.

    15. [15]

      [15] HAAG W O, LAGO R M, WEISZ P B. The active-site of acidic aluminosilicate catalysts[J]. Nature, 1984, 309(5969): 589-591.

    16. [16]

      [16] HENSEN E J M, GARCIA-SANCHEZ M, RANE N, MAGUSIN P C M M, LIU P H, CHAO K J, VAN SANTEN R A. In situ Ga K edge XANES study of the activation of Ga/ZSM-5 prepared by chemical vapor deposition of trimethylgallium[J]. Catal Lett, 2005, 101(1/2): 79-85.

    17. [17]

      [17] KAZANSKY V B, SUBBOTINA I R, SANTEN R A, HENSEN E J M. DRIFTS study of the chemical state of modifying gallium ions in reduced Ga/ZSM-5 prepared by impregnation: I. Observation of gallium hydrides and application of CO adsorption as a molecular probe for reduced galliumions[J]. J Catal, 2004, 227(2): 263-269.

    18. [18]

      [18] 高志贤, 程昌瑞, 谭长谕. Ga/HZSM-5催化剂中镓的状态及其分布的XPS研究[J].燃料化学学报, 1995, 23(3): 301-305. (GAO Zhi-xian, CHENG Chang-rui, TAN Chang-yu. XPS study on state and distribution of gallium in Ga/HZSM-5 catalyst[J]. J Fuel Chem Technol,1995, 23(3): 301-305.)

    19. [19]

      [19] RANE N, OVERWEG A R, KAZANSKY V B, SANTEN R A V, HENSEN E J M. Characterization and reactivity of Ga+ and GaO+ cations in zeolite ZSM-5[J]. J Catal, 2006, 239(2): 478-485.

    20. [20]

      [20] 王恒强, 张成华, 吴宝山, 任杰, 李永旺. Ga、Zn改性方法对HZSM-5催化剂丙烯芳构化性能的影响[J]. 燃料化学学报, 2010, 38(3): 576-581. (WANG Heng-qiang, ZHANG Cheng-hua, WU Bao-shan, REN Jie, LI Yong-wang. Effect of Ga and Zn modification on propylene aromatization over HZSM-5 catalysts[J]. J Fuel Chem Technol, 2010, 38(3): 576-581.)

    21. [21]

      [21] MONTES A, GIANNETTOB G. A new way to obtain acid or bifunctional catalysts V. Considerations on bifunctionality of the propane aromatizationreaction over-ZSM-5 catalysts[J]. Appl Catal A: Gen, 2000, 197(1): 31-39.

    22. [22]

      [22] PIDKO E A, HENSEN E J M, VAN SANTEN R A. Dehydrogenation of light alkanes over isolated gallyl ions in Ga/ZSM-5 zeolites[J]. J Phys Chem, 2007, 111(35): 13068-13075.

    23. [23]

      [23] AUSAVASUKHI A, SOOKNOI T. Tunable activity of HZSM-5 with H2 treatment: Ethane dehydrogenation[J]. Catal Comm, 2014, 45(1): 63-68.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    6. [6]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    7. [7]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    10. [10]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    11. [11]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    12. [12]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    13. [13]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    14. [14]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    16. [16]

      Heng GaoJiwei ZhangPeng ZhanXinyong Liu . AL5E: A breakthrough in broad-spectrum coronavirus inactivation through structure-guided design. Chinese Chemical Letters, 2025, 36(7): 111221-. doi: 10.1016/j.cclet.2025.111221

    17. [17]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    18. [18]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    20. [20]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

Metrics
  • PDF Downloads(0)
  • Abstract views(444)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return