Citation:
CHANG Guo-zhang, HUANG Yan-qin, LAI Xi-rui, YIN Xiu-li, WU Chuang-zhi. Experimental study on the structure and reactivity of palm kernel shell chars duing CO2 gasification[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(8): 947-954.
-
The palm kernel shell(PKS) chars of different conversions were prepared in a tube furnace by using CO2 as gasification agent, and the gasification reactivity of PKS chars were tested by thermogravimetry analyzer. The pore structure, degree of carbon structure ordering, mineral element content and distribution of PKS chars of different conversions were characterized by surface area measurement, Raman spectra, X-ray flourimeter(XRF), scanning electron microscopy and energy dispersive X-ray spectroscopy(SEM-EDX), respectively. The results show that the fixed carbon content of PKS chars reduces gradually, and the proportion of ordered carbon stabilizes at 0.30~0.33 during CO2 gasification. The ash content increases gradually along with the increasing of conversion, but the gasification reaction index Rs of PKS chars increases after a decreased stage. At the early stage of pore size expansion (conversion x< 23%), the change tendency of Rs of PKS chars is in accordance with the surface area. As the gasification reaction continues (23%< x< 31%), Rs has few changes. The surface area of PKS chars has a linear correlation with the conversion from 31% to 68%, and Rs increases with the increasing surface area and the catalysis of mineral elements as x> 56%. When x> 68%, the Rs of PKS chars is mainly controlled by catalysis of minerals.
-
-
-
[1]
[1] MOHAMMED M A A, SALMIATON A, WAN ZALINA W A K G, MOHAMMED AMRAN M S, FAKHRU'L-RAZI A, TAUFIQ-YAP Y H. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia[J]. Renew Sust Energy Rev, 2011, 15(2): 1258-1270.
-
[2]
[2] YANG H P, YAN R, CHEN H P, LEE D H, LIANG D T, ZHENG C G. Mechanism of palm oil waste pyrolysis in a packed bed[J]. Energy Fuel, 2006, 20(3): 1321-1328.
-
[3]
[3] CHAIVATAMASET P, SRICHAROON P, TIA S. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed[J]. Appl Therm Eng, 2011, 31(14): 2916-2927.
-
[4]
[4] SAIKAEW T, SUPUDOMMAK P, MEKASUT L, PIUMSOMBOON P, KUCHONTHARA P. Emission of NOx and N2O from co-combustion of coal and biomasses in CFB combustor[J]. Int J Greenh Gas Con, 2012, 10: 1026-32.
-
[5]
[5] MOKHLESUR R M, ALIAS M Y. Preparation and modification of activated carbon from oil-palm shell and its adsorption capacity through speciation of chromium[J]. Res J Chem Environ, 2011, 15(4): 49-51.
-
[6]
[6] 俞元元, 肖军, 沈来宏, 杜玉照. 不同催化剂对生物质半焦低温气化效果的影响[J]. 农业工程学报, 2013, 29(3):190-197. (YU Yuan-yuan, XIAO Jun, SHEN Lai-hong, DU Yu-zhao. Effects of different catalysts on steam gasification of biomass char at low temperature[J]. Trans Chin Soc Agric Eng, 2013, 29(3): 190-197.)
-
[7]
[7] LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. Ash of palm empty fruit bunch as a natural catalyst for promoting the CO2 gasification reactivity of biomass char[J]. Bioresource Technol, 2013, 132: 351-355.
-
[8]
[8] 杨海平, 陈汉平, 陈应泉, 王贤华, 张世红. 热解过程中棕榈壳焦的物化结构演变特性[J].中国电机工程学报, 2008, 28(32): 106-110. (YANG Hai-ping, CHEN Han-ping, CHEN Ying-quan, WANG Xian-hua, ZHANG Shi-hong. Investigation on the forming property of palm oil shell char physicochemical structure during biomass pyrolysis[J]. Proceed CSEE, 2008, 28(32): 106-110.)
-
[9]
[9] 肖瑞瑞, 陈雪莉, 王辅臣, 于广锁. 生物质半焦CO2气化反应动力学研究[J]. 太阳能学报, 2012, 33(2): 236-242. (XIAO Rui-rui, CHEN Xue-li, WANG Fu-chen, YU Guang-suo. Research on kinetics characteristics of gasification biomass semi-char with CO2[J]. Acta Energy Sin, 2012, 33(2): 236-242.)
-
[10]
[10] 张瑜, 邹志祥, 闵凡飞, 李寒旭, 董众兵. 生物质半焦CO2气化反应活性的实验研究[J]. 煤炭学报, 2008, 33(5): 579-582. (ZHANG Yu, ZOU Zhi-xiang, MIN Fan-fei, LI Han-xu, DONG Zhong-bing. Experimental study of the reactivity of biomass char with CO2 by thermal analysis techniques[J]. J China Coal Soc, 2008, 33(5): 579-582.)
-
[11]
[11] 吴正舜, 吴创之, 马隆龙, 郑舜鹏, 戴先文. 1 MW木粉气化发电系统的运行特性分析[J]. 太阳能学报, 2003, 24(3): 390-393. (WU Zheng-shun, WU Chuang-zhi, MA Long-long, ZHENG Shun-peng, DAI Xian-wen. The performance and analysis of 1 MW electric energy generation system by biomass gasification[J]. Acta Energy Sin, 2003, 24(3): 390-393.)
-
[12]
[12] 黄艳琴. 生物质两段式气化基础及实验研究. 北京: 中国科学院大学, 2009. (HUANG Yan-qin. The Fundamental and experimental research on biomass two-stage gasification. Beijing: University of Chinese Acedemy of Sciences, 2009.)
-
[13]
[13] LAHIJANI P, ZAINAL Z A, MOHAMED A R. Catalytic effect of iron species on CO2 gasification reactivity of oil palm shell char[J]. Thermochim Acta, 2012, 546: 24-31.
-
[14]
[14] BAI Y H, WANG Y L, ZHU S H, YAN L J, LI F, XIE K C. Synergistic effect between CO2 and H2O on reactivity during coal chars gasification[J]. Fuel, 2014, 126: 1-7.
-
[15]
[15] CHIN G, KIMURA S, TONE S, OTAKE T. Gasification of coal char with steam:(part 2)Pore structure and reactivity[J]. Int Chem Eng, 1983, 23(1): 113-120.
-
[16]
[16] 向银花, 王洋, 张建民, 董众兵, 李斌. 煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究[J]. 燃料化学学报, 2002, 30(2): 108-112. (XIANG Yin-hua, WANG Yang, ZHANG Jian-min, DONG Zhong-bing, LI Bin.Study on structural properties and their affecting factors during gasification of chars[J]. J Fuel Chem Technol, 2002, 30(2): 108-112.)
-
[17]
[17] 谢克昌, 赵明举, 凌大琦. 矿物质对煤焦表面性质和煤焦-CO2气化反应的影响[J]. 燃料化学学报, 1990, 18(4): 316-323. (XIE Ke-chang, ZHAO Ming-ju, LING Da-qi. Effect of mineral matter on microstructural properties and CO2-gasification of high-ash coal chars[J]. J Fuel Chem Technol, 1990, 18(4): 316-323.)
-
[18]
[18] 柳晓飞, 尤静林, 王媛媛, LU Li-ming, 解迎芳, 余立旺, 伏清. 澳大利亚烟煤热解的拉曼光谱研究[J]. 燃料化学学报, 2014, 42(3): 270-276. (LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic study on the pyrolysis of Australian bituminous coal[J]. J Fuel Chem Technol, 2014, 42(3): 270-276.)
-
[19]
[19] MARQUES M, SUAREZ-RUIZ I, FLORES D, GUEDES A, RODRIGUES S. Correlation between optical, chemical and micro-structural parameters of high-rank coals and graphite[J]. Int J Coal Geol, 2009, 77(3/4): 377-382.
-
[20]
[20] TUINSTRA F, KOENIG J K. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3): 1126-1130.
-
[1]
-
-
-
[1]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
-
[2]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[3]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[4]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074
-
[5]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[6]
Fan Wu , Wenchang Tian , Jin Liu , Qiuting Zhang , YanHui Zhong , Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031
-
[7]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[8]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[9]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[10]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[11]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[12]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[13]
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
-
[14]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[15]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[16]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[17]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[18]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[19]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[20]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(377)
- HTML views(21)