Citation:
GUAN Qing-liang, BI Da-peng, XUAN Wei-wei, ZHANG Jian-sheng. Thermogravimetric-gas chromatographic study on effects of hydrogen pressure on coal hydrogenation[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(8): 914-922.
-
Thermogravimetric characteristics and evolution of main gaseous products during hydrogenation of two coals were studied in a thermogravimetry-gas chromatography combined system at 15℃/min, 0.1~5MPa and a final temperature of 1000℃. The results show that the hydrogenation process occurs in four stages: drying and degassing, hydropyrolysis, rapid hydrogasification, and slow hydrogasification. With increasing hydrogen pressure, hydrogenation of volatile radicals is promoted and decomposition of oxygen-containing functional groups forming carbon oxides is inhibited. During hydropyrolysis stage, the weight loss rate increases with hydrogen pressure for FG coal, while the hydrogen pressure has little influence on that for HLE coal. During the rapid hydrogasification stage, the evolution rate of CH4 increases with hydrogen pressure; for HLE coal the evolution rate of CH4 doesn't increase with hydrogen pressure any more at high pressures (3~5MPa). The HLE coal with higher oxygen content contains more active sites provided by the oxygen-containing groups in the semi-char. The FG coal with higher H/C atomic ratio is able to provide more hydrogen by itself during hydrogenation reactions. The kinetic data of the slow hydrogasification stage is k0=2.38×107 (min-1·MPa-1), E=231kJ/mol, n=1 for the FG coal and k0=2.64×103 (min-1·MPa-0.736), E=127kJ/mol, n=0.736 for the HLE coal.
-
-
-
[1]
[1] STEINBERG M. Process for conversion of coal to substitute natural gas (SNG). New York: HCE, LLC, 2005.
-
[2]
[2] ANTHONY D B, HOWARD J B. Coal devolatilization and hydrogasification[J]. AIChE J, 1976, 22(4): 625-656.
-
[3]
[3] JUNTGEN H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal[J]. Fuel, 1984, 63(6): 731-737.
-
[4]
[4] 李保庆. 煤加氢热解研究Ⅰ.宁夏灵武煤加氢热解的研究[J]. 燃料化学学报, 1995, 23(1): 57-61. (LI Bao-qing. Hydropyrolysis of Chinese coals I. Hydropyrolysis of lingwu bituminous coal[J]. J Fuel Chem Technol, 1995, 23(1): 57-61.)
-
[5]
[5] BLACKWOOD J D. The reaction of carbon with hydrogen at high pressure[J]. Aust J Chem, 1959, 12(1): 14-28.
-
[6]
[6] MISIRLIOGLU Z, CANEL M, SINAG A. Hydrogasification of chars under high pressures[J]. Energy Convers Manage, 2007, 48(1): 52-58.
-
[7]
[7] 陈皓侃, 李保庆, 张碧江. 反应条件对煤加氢热解产物分布的影响[J]. 燃料化学学报, 1997, 25(1): 50-55. (CHEN Hao-kan, LI Bao-qing, ZHANG Bi-jiang. Effects of reaction parameters on product yields during coal hydropyrolysis[J]. J Fuel Chem Technol, 1997, 25(1): 50-55.)
-
[8]
[8] XU W C, MATSUOKA K, AKIHO H, KUMAGAI M, TOMITA A. High pressure hydropyrolysis of coals by using a continuous free-fall reactor[J]. Fuel, 2003, 82(6): 677-685.
-
[9]
[9] GUELL A J, KANDIYOTI R. Development of a gas-sweep facility for the direct capture of pyrolysis tars in a variable heating rate high-pressure wire-mesh reactor[J]. Energy Fuels, 1993, 7(6): 943-952.
-
[10]
[10] 虞继舜. 煤化学[M]. 北京: 冶金工业出版社, 2000. (YU Ji-shun. Coal chemistry[M]. Beijing: Metallurgical Industry Press, 2000.)
-
[11]
[11] YU J, LUCAS J A, WALL T F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review[J]. Prog Energy Combust Sci, 2007, 33(2): 135-170.
-
[12]
[12] DING X, ZHANG Y, ZHANG T, TANG J, XU Y, ZHANG J. Effect of operational variables on the hydrogasification of inner mongolian lignite semicoke[J]. Energy Fuels, 2013, 27(8): 4589-4597.
-
[13]
[13] XU W C, KUMAGAI M. Nitrogen evolution during rapid hydropyrolysis of coal[J]. Fuel, 2002, 81(18): 2325-2334.
-
[14]
[14] XU W C, KUMAGAI M. Sulfur transformation during rapid hydropyrolysis of coal under high pressure by using a continuous free fall pyrolyzer[J]. Fuel, 2003, 82(3): 245-254.
-
[15]
[15] ZHANG J, WANG X, WANG F, WANG J. Investigation of hydrogasification of low-rank coals to produce methane and light aromatics in a fixed-bed reactor[J]. Fuel Process Technol, 2014, 127(0): 124-132.
-
[16]
[16] GARDNER N, SAMUELS E, WILKS K. Catalyzed hydrogasification of coal chars[J]. Adv Chem Ser, 1974, 131: 217-236.
-
[17]
[17] TOMITA A, MAHAJAN O P, WALKER JR P L. Reactivity of heat-treated coals in hydrogen[J]. Fuel, 1977, 56(2): 137-144.
-
[18]
[18] LI S, SUN R. Kinetic studies of a lignite char pressurized gasification with CO2, H2 and steam[J]. Fuel, 1994, 73(3): 413-416.
-
[19]
[19] GONZALEZ J F, RAMIRO A, SABIO E, ENCINAR J M, GONZALEZ C M. Hydrogasification of almond shell chars. Influence of operating variables and kinetic study[J]. Ind Eng Chem Res, 2002, 41(15): 3557-3565.
-
[1]
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[5]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[6]
Zhongyun Wu , Li Wang , Xiaokui Wang , Wanchun Zhu , Yuan Chun , Fuping Tian , Yongmei Liu , Yunshan Bai , Hong Yuan , Yufeng Li , Shu'e Song , Jianrong Zhang , Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Pressure. University Chemistry, 2025, 40(5): 137-147. doi: 10.12461/PKU.DXHX202503027
-
[7]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[8]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[9]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[10]
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
-
[11]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[12]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[13]
Yecang Tang , Shan Ling , Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107
-
[14]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[15]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
-
[16]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[17]
Zhenli Sun , Ning Wang , Kexin Lin , Qin Dai , Yufei Zhou , Dandan Cao , Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095
-
[18]
Zhaoyang Li , Haiyan Zhao , Yali Zhang , Yuan Zhang , Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131
-
[19]
Zhening Lou , Quanxing Mao , Xiaogeng Feng , Lei Zhang , Xu Xu , Yuyang Zhang , Xueyan Liu , Hongling Kang , Dongyang Feng , Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089
-
[20]
Yan Zhang , Ping Wang , Tiebo Xiao , Futing Zi , Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(511)
- HTML views(72)