Citation: QI Xiao-bin, SONG Guo-liang, SONG Wei-jian, LÜ Qing-gang. Alkali metal migration and slagging characteristic during Zhundong high-alkali coal gasification[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(8): 906-913. shu

Alkali metal migration and slagging characteristic during Zhundong high-alkali coal gasification

  • Corresponding author: SONG Guo-liang, 
  • Received Date: 31 March 2015
    Available Online: 28 May 2015

    Fund Project: 中国科学院战略性先导科技专项(A类,XDA07030100) (A类,XDA07030100)国家国际科技合作专项(2014DFG61680)。 (2014DFG61680)

  • The Tianchi Mulei high-alkali coal gasification in a circulating fluidized bed (CFB) was conducted to study the operating characteristic and the migration of alkali metals, and the phenomenon of bed particles agglomeration was examined by some analytical technologies. The results show that the water-soluble and ammonium-acetate-soluble Na is released into gas while the insoluble Na is mainly remained in semi-char, indicating that the transformation of alkali is different for different modes of occurrence. At higher gasification temperature, both of Na existed in slag and gas become more, while the Na in fly ash declines. The condensation rate of Na in gas phase is higher than that of K with the decreasing of down stream temperature. It seems that the degree of agglomeration increases with the increase of temperature, resulting in bed temperature fluctuation. The eutectic with strong viscosity, formed by a direct reaction between alkali and mineral component of ash or SiO2 of bed material, is considered as the key factor leading to the agglomeration of particles.
  • 加载中
    1. [1]

      [1] 严陆光, 夏训诚, 吕绍勤, 吴甲春, 林闽, 黄常纲. 大力推进新疆大规模综合能源基地的发展[J]. 电工电能新技术, 2011, 30(1): 1-7. (YAN Lu-gang, XIA Xun-cheng, LÜ Shao-qin, WU Jia-chun, LIN Min, HUANG Chang-gang. Great promotion of development of large scale integrative energy base in Xinjiang[J]. Adv Technol Electr Eng Energy, 2011, 30(1): 1-7.)

    2. [2]

      [2] 于强, 张健强. 燃用高钠煤对锅炉受热面的影响[J]. 锅炉制造, 2012, (4): 4-6. (YU Qiang, ZHANG Jian-qiang. Effect of burning high-sodium coal on boiler heating surface[J]. Boiler Manuf, 2012, (4): 4-6.)

    3. [3]

      [3] 杨忠灿, 刘家利, 何红光. 新疆准东煤特性研究及其锅炉选型[J]. 热力发电, 2010, 39(8): 38-40. (YANG Zhong-can, LIU Jia-li, HE Hong-guang. Study on properties of Zhundong coal in Xinjiang region and type-selection for boilers burning this coal sort[J]. Therm Power Gener, 2010, 39(8): 38-40.)

    4. [4]

      [4] 董明钢. 高钠煤对锅炉受热面结渣、沾污和腐蚀的影响及预防措施[J]. 热力发电, 2008, 37(9): 35-39. (DONG Ming-gang. Influence of high-sodium coal upon slagging, contamination and corrosion on the heating surface of boilers[J]. Therm Power Gener, 2008, 37(9): 35-39.)

    5. [5]

      [5] 申文琴, 熊利红, 沙兴中. 热煤气中碱金属蒸汽的形成及清除方法[J]. 煤气与热力, 1998, 18(6): 3-5. (SHEN Wen-qin, XIONG Li-hong, SHA Xing-zhong. Formation and removal of gaseous alkali metal of hot gas[J]. Gas Heat, 1998, 18(6): 3-5.)

    6. [6]

      [6] LINJEWILE T M, MANZOORI A R. Role of additives in controlling agglomeration and defluidization during fluidized bed combustion of high-sodium, high-sulphur low-rank coal[J]. Impact Miner Imp Solid Fuel Combust, 1999: 319-330.

    7. [7]

      [7] BENSON S A, HOLM P L. Comparision of inorganic constituents in three low-rank coals[J]. Ind Eng Chem Prod Res Dev, 1985, 24(1): 145-149.

    8. [8]

      [8] 汉春利, 张军, 刘坤磊, 徐益谦. 煤中钠的存在形式的研究[J]. 燃料化学学报, 1999, 37(6): 95-98. (HAN Chun-li, ZHANG Jun, LIU Kun-lei, XU Yi-qian. Modes of occurrence of sodium in coals[J]. J Fuel Chem Technol, 1999, 37(6): 95-98.)

    9. [9]

      [9] 卫小芳, 刘铁峰, 黄戒介, 房倚天, 王洋. 澳大利亚高盐煤中钠在热解过程中的形态变迁[J]. 燃料化学学报, 2010, 38(2): 144-148. (WEI Xiao-fang, LIU Tie-feng, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Transformation of Na in an Australian high-sodium coal during pyrolysis[J]. J Fuel Chem Technol, 2010, 38(2): 144-148.)

    10. [10]

      [10] 李勇, 肖军, 章明耀. 燃煤过程中碱金属迁移规律的模拟与预测分析[J]. 燃料化学学报, 2005, 33(5): 556-560. (LI Yong, XIAO Jun, ZHANG Ming-yao. Modeling and prediction of migration mechanism of alkali metals during coal-fired process[J]. J Fuel Chem Technol, 2005, 33(5): 556-560.)

    11. [11]

      [11] 刘敬, 王智化, 项飞鹏, 黄镇宇, 刘建忠, 周俊虎, 岑可法. 准东煤中碱金属的赋存形式及其在燃烧过程中的迁移规律实验研究[J]. 燃料化学学报, 2014, 42(3): 316-322. (LIU Jing, WANG Zhi-hua, XIANG Fei-peng, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol, 2014, 42(3): 316-322.)

    12. [12]

      [12] 翁青松, 王长安, 车得福, 付子文. 准东煤碱金属赋存形态及对燃烧特性的影响[J]. 燃烧科学与技术, 2013, 20(3): 216-221. (WENG Qing-song, WANG Chang-an, CHE De-fu, FU Zi-wen. Alkali metal occurrence mode and its influence on combustion characteristics in Zhundong coals[J]. J Combust Sci Technol, 2013, 20(3): 216-221.)

    13. [13]

      [13] 卫小芳, 黄戒介, 房倚天, 王泽.外加NaCl和NaAc褐煤在气化上过程中钠的形态变迁规律研究[J]. 燃料化学学报, 2009, 37(1): 6-10. (WEI Xiao-fang, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Transformation of sodium during gasification of a lignite with addition of NaCl and NaAc[J]. J Fuel Chem Technol, 2009, 37(1): 6-10.)

    14. [14]

      [14] 宋维健, 宋国良, 张海霞, 范金龙, 吕清刚. 准东高钠煤热解过程中钠的迁移特性实验研究[J]. 燃料化学学报, 2015, 43(1): 16-21. (SONG Wei-jian, SONG Guo-liang, ZHANG Hai-xia, FAN Jin-long, LÜ Qing-gang. Experimental study on alkali metal transformation during high-sodium Zhundong coal pyrolysis[J]. J Fuel Chem Technol, 2015, 43(1): 16-21.)

    15. [15]

      [15] KOSMINSKI A, ROSS D P, AGNEW J B. Transformation of sodium during gasification of low-rank coal[J]. Fuel Process Technol, 2005, 87(11): 943-952.

    16. [16]

      [16] KOSMINSKI A, ROSS D P, AGNEW J B. Reaction between sodium and silica during gasification of a low-rank coal[J]. Fuel Process Technol, 2005, 87(12): 1037-1049.

    17. [17]

      [17] KOSMINSKI A, ROSS D P, AGNEW J B. Reaction between sodium and kaolin during gasification of a low-rank coal[J]. Fuel Process Technol, 2005, 87(12): 1051-1062.

    18. [18]

      [18] 刘嘉鹏. 循环流化床双床煤气化及富氧煤气化试验研究. 北京: 中国科学院大学. 2014. (LIU Jia-peng.Experimental study on dual circulating fluidized beds gasification and oxygen-enriched gasification. Beijing: University of Chinese Academy of Sciences, 2014.)

    19. [19]

      [19] 王珲, 宋蔷, 姚强, 陈昌和, 俞非漉. ICP-OES/ICP-MS测定煤中多种元素的微波消解方法研究[J]. 光谱学和光谱分析, 2012, 32(6): 1662-1665. (WANG Hui, SONG Qiang, YAO Qiang, CHEN Chang-he, YU Fei-lu. Study on microwave digestion of coal for the determination of multielement by ICP-OES and ICP-MS[J]. Spectrosc Spectr Anal, 2012, 32(6): 1662-1665.)

    20. [20]

      [20] 张军, 汉春利. 煤中碱金属及其在燃烧中的行为[J]. 热能动力工程, 1999, 14(2): 83-85. (ZHANG Jun, HAN Chun-li. Various forms of alkali metal in coal and its behavior during coal combustiom[J]. J Eng power, 1999, 14(2): 83-85.)

    21. [21]

      [21] 刘小伟, 徐明厚, 姚红, 于敦喜, 吕当振, 张会兴. 煤中钠元素赋存形态对亚微米颗粒物形成的影响研究[J]. 工程热物理学报, 2009, 30(9): 1589-1592. (LIU Xiao-wei, XU Ming-hou, YAO Hong, YU Dun-xi, LÜ Dang-zhen, ZHANG Hui-xing. Study of occurrence mode of sodium effect on the submicron ash particle formation during coal combustion[J]. J Eng Thermophys, 2009, 30(9): 1589-1592.)

    22. [22]

      [22] GRAHAM K A. Submicroash formation and interaction with sulfur oxides during pulverized coal combustion. Boston: Massachusetts Institute of Technology, 1990.

    23. [23]

      [23] 杨换凌, 张忠孝, 乌晓江. 高碱煤中NaCl与水冷壁吸附作用的量子化学研究[J]. 上海理工大学学报, 2013, 35(5): 409-414. (YANG Huan-ling, ZHANG Zhong-xiao, WU Xiao-jiang. Quantum chemistry calculation for the adsorption of NaCl on waterwall in high alkali coal[J]. J Univ Shanghai Sci Technol, 2013, 35(5): 409-414.)

    24. [24]

      [24] 岑可法. 锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理和计算[M]. 北京: 科学出版社, 1994: 26-32. (CEN Ke-fa.Prevention principle and calculation on fouling, agglomeration, abrasion and corrosion of boil and heat exchanger[M]. Beijing: Science Press, 1994: 26-32.)

    25. [25]

      [25] GELDART D. Types of gas fluidization[J]. Power Technol, 1973, 7(5): 285-292.

    26. [26]

      [26] 陆佩文. 无机材料科学基础[M]. 武汉: 武汉工业大学出版社, 1996: 85-89. (LU Pei-wen.Inorganic materials science foundation[M]. Wuhan: Wuhan University of Technology Press, 1996: 85-89.)

    27. [27]

      [27] 邱朋华, 赵岩, 陈希叶, 徐健健, 杜亚文, 方来熙, 孙绍增. 碱及碱土金属对准东煤热解特性及动力学影响分析[J]. 燃料化学学报, 2014, 42(10): 1178-1189. (QIU Peng-hua, ZHAO Yan, CHEN Xi-ye, XU Jian-jian, DU Ya-wen, FANG Lai-xi, SUN Shao-zeng. Effects of alkali and alkaline earth metallic species on pyrolysis characteristics and kinetics of Zhundong coal[J]. J Fuel Chem Technol, 2014, 42(10): 1178-1189. )

  • 加载中
    1. [1]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    2. [2]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    4. [4]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    5. [5]

      Ying Wang Quanguo Zhai Zhiqiang Wang Qingjuan Lei Shengli Gao . 无机化学中“碱金属元素”教学内容的重构. University Chemistry, 2025, 40(6): 85-92. doi: 10.12461/PKU.DXHX202407049

    6. [6]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    13. [13]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    14. [14]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    15. [15]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    16. [16]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    19. [19]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    20. [20]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

Metrics
  • PDF Downloads(0)
  • Abstract views(721)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return