Citation: BI Wen-zhuo, ZHAO Rui-dong, CHEN Tian-ju, WU Jing-li, WU Jin-hu. Study on the formation of PCDD/Fs in PVC chemical looping combustion[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(7): 884-889. shu

Study on the formation of PCDD/Fs in PVC chemical looping combustion

  • Corresponding author: ZHAO Rui-dong,  WU Jin-hu, 
  • Received Date: 15 February 2015
    Available Online: 6 May 2015

    Fund Project: 国家重点基础研究发展规划(973 计划, 2011CB201502) (973 计划, 2011CB201502) 中国博士后科学基金(2014M551978)。 (2014M551978)

  • CaSO4 oxygen carriers with silica sol were prepared and their reaction performances with CH4, CO and H2 were experimentally investigated. The formation characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in PVC combustion by means of chemical looping combustion (CLC) based on CaSO4 oxygen carrier and air were studied in a tube furnace system. The results show that CaSO4 oxygen carriers with silica sol can be completely reduced by CH4, CO and H2. The reaction time of CH4 and H2 is much shorter than CO. The chemical looping combustion of PVC can effectively inhibit the formation of PCDD/Fs. The yield and International Toxicity Equivalent Quantity (I-TEQ) of PCDD/Fs produced in CLC are 2 270.9 pg/g and 290.2 pg(I-TEQ)/g, much lower than those in air combustion which are 34 172.5 pg/g and 732.8 pg(I-TEQ)/g. It is mainly because fuel doesn't directly contact with O2 in CLC, the oxidative cleavage of large carbon molecule and the conversion from HCl to Cl2 are significantly reduced which will inhibit the low temperature de novo synthesis and precursors reaction of PCDD/Fs.
  • 加载中
    1. [1]

      [1] CHENG H F, HU Y A. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China[J]. Bioresour Technol, 2010, 101(11): 3816-3824.

    2. [2]

      [2] 金余其. 城市生活垃圾燃烧特性及新型流化床焚烧技术的研究. 杭州: 浙江大学, 2002. (JIN Yu-qi. Study on MSW combustion characteristics and a new CFB incineration technology. Hangzhou: Zhejiang University, 2002.)

    3. [3]

      [3] 《固体废物再生利用污染防治技术导则(征求意见稿)》[S]. 环境保护部, 2013. (Guideline on pollution prevention and control technologies for solid waste recycling[S]. Ministry of Environmental Protection, 2013.)

    4. [4]

      [4] HUTZINGER O, BLUMICH M J, BERG M, OLIE K. Sources and fate of PCDDs and PCDFs: An overview[J]. Chemosphere, 1985, 14(6): 581-600.

    5. [5]

      [5] ADDINK R, OLIE K. Role of oxygen in formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from carbon on fly ash[J]. Environ Sci Technol, 1995, 29(6): 1586-1590.

    6. [6]

      [6] 余钟亮, 李春玉, 景旭亮, 丁亮, 房倚天, 黄戒介. 碳酸钾催化的铁基氧载体煤催化化学链燃烧[J]. 燃料化学学报, 2013, 41(7): 826-831. (YU Zhong-liang, LI Chun-yu, JING Xu-liang, DING Liang, FANG Yi-tian, HUANG Jie-jie. Catalytic chemical looping combustion of coal with iron-based oxygen carrier promoted by K2CO3[J]. J Fuel Chem Technol, 2013, 41(7): 826-831.)

    7. [7]

      [7] 王杰, 王文举, 朱曙光, 熊荣辉, 刘心志. 化学链燃烧技术中载氧体的研究进展[J]. 现代化工, 2013, 32(11): 13-17. (WANG Jie, WANG Wen-ju, ZHU Shu-guang, XIONG Rong-hui, LIU Xin-zhi. Development of oxygen carriers in chemical-looping combustion technology[J]. Mod Chem Ind, 2013, 32(11): 13-17.)

    8. [8]

      [8] KUZUHARA S, SATO H, KASAI E, NAKAMURA T. Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon[J]. Environ Sci Technol, 2003, 37(11): 2431-2435.

    9. [9]

      [9] GUO Q J, ZHANG J S, TIAN H J. Recent advances in CaSO4 oxygen carrier for chemical-looping combustion process[J]. Chem Eng Commun, 2012, 199(11): 1463-1491.

    10. [10]

      [10] HINTON W S, LANE A M. Synthesis of polychlorinated dioxins over MSW incinerator fly ash to identifycatalytic species[J]. Chemosphere, 1991, 23(7): 831-840.

    11. [11]

      [11] BUEKENS A, HUANG H. Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration[J]. J Hazard Mater, 1998, 62(1): 1-33.

    12. [12]

      [12] DICKSON L, LENOIR D, HUTZINGER O. Quantitative comparison of de novo and precursor formation of polychlorinated dibenzo-p-dioxins under simulated municipal solid waste incinerator postcombustion conditions[J]. Environ Sci Technol, 1992, 26(9): 1822-8.

    13. [13]

      [13] MICHAEL S M, ELMAR R A. Chlorophenol reactions on fly ash. 1. Adsorption/desorption equilibria and conversion to polychlorinated dibenzo-p-dioxins[J]. Environ Sci Technol, 1996, 30(1): 225-229.

    14. [14]

      [14] GULLETT B K, BRUCE K R, BEACH L O. Formation of chlorinated organics during solid waste combustion[J]. Waste Manage Res, 1990, 8(3): 203-214.

    15. [15]

      [15] STANMORE B. The formation of dioxins in combustion systems[J]. Combust Flame, 2004, 136(3): 398-427.

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    3. [3]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    4. [4]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    7. [7]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    8. [8]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    9. [9]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    14. [14]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    16. [16]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(0)
  • Abstract views(1151)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return