Citation:
WANG Dong, WU Jing-kun, NIU Sheng-li, LU Chun-mei, XU Li-ting, YU He-wei, LI Jing. Structural property of γ-Fe2O3 catalysts doped with Sn and Ti and their activity in the selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(7): 876-883.
-
A series of γ-Fe2O3 catalysts doped with Sn and Ti (γ-Fe0.95Ti0.05Oz, γ-Fe0.95Sn0.05Oz, and γ-Fe0.95Sn0.025Ti0.025Oz) were prepared by the microwave assisted co-precipitation method. The crystal phase, pore structure, surface element distribution and microscopic morphology of the doped γ-Fe2O3 catalysts were characterized by X-ray diffraction (XRD), N2 sorption, energy dispersive spectrometer (EDS) and scanning electron microscope (SEM); the influence of Sn and Ti doping on their activity in the selective catalytic reduction (SCR) of NOx was investigated. The results indicated that Sn and Ti are highly dispersed as amorphous species in crystal lattice of γ-Fe2O3, forming sosoloid with Fe. Through doping with Ti, the γ-Fe0.95Ti0.05Oz catalyst exhibits a high de-NOx efficiency of above 90% at 250~400 ℃, with a maximum of 98.3%; the addition of Ti is effective to reduce the crystallization degree of γ-Fe2O3, improve the pore structure of 2~100 nm, and suppress the formation of α-Fe2O3 phase, which are of benefits to get tiny and uniform discrete γ-Fe2O3 particles with high activity in SCR. However, Sn as an additive may aggravate the sintering and derogate pore structure of 2~6 nm for the γ-Fe0.95Sn0.05Oz catalyst, which is detrimental to SCR. The incorporation of both Sn and Ti leads to a decrease of the surface O/Fe atomic ratio from 1.83 to 1.33; the dramatic decrease of surface lattice oxygen content due to the synergistic effect between Sn and Ti may restrain the SCR activity of γ-Fe0.95Sn0.025Ti0.025Oz.
-
Keywords:
- selective catalytic reduction (SCR),
- de-NOx,
- catalyst,
- γ-Fe2O3,
- additives doped
-
-
-
[1]
[1] CAO F, XIANG J, SU S, WANG P Y, SUN L S, HU S, LEI S Y. The activity and characterization of MnOx-CeO2-ZrO2/g-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3[J]. Chem Eng J, 2014, 243: 347-354.
-
[2]
[2] 杨晓燕, 沈伯雄, 马宏卿, 刘亭, 左琛. 前驱物对Mn-Ce/Ti-PILC低温SCR脱硝的影响[J]. 燃料化学学报, 2012, 40(1): 119-123. (YANG Xiao-yan, SHEN Bo-xiong, MA Hong-qing, LIU Ting, ZUO Chen. Study on the effect of Mn-Ce/Ti-PILC on low temperature SCR activity prepared with different precursors[J]. J Fuel Chem Technol, 2012, 40(1): 119-123.)
-
[3]
[3] 黄海凤, 陈一杰, 杨睿, 朱秋莲, 卢晗锋. Fe-V/TiO2催化剂NH3选择性催化还原柴油车尾气NOx[J]. 燃料化学学报, 2014, 42(6): 751-757. (HUANG Hai-feng, CHEN Yi-jie, YANG Rui, ZHU Qiu-lian, LU Han-feng. Fe-V/TiO2 catalysts for selective catalytic reduction of NOx with NH3 in diesel exhaust[J]. J Fuel Chem Technol, 2014, 42(6): 751-757.)
-
[4]
[4] MA L, LI J H, KE R, FU L X. Catalytic performance, characterization and mechanism study of Fe(SO4)3/TiO2 catalyst for selective catalytic reduction of NOz by ammonia[J]. J Phys Chem C, 2011, 115(15): 7603-7612.
-
[5]
[5] APOSTOLESCU N, GEIGER B, HIZBULLAH K, JANC M T, KURETIA S, REICHERTA D, SCHOTTA F, WEISWEILERA W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Appl Catal B: Environ, 2006, 62(1/2): 104-114.
-
[6]
[6] LIU F D, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J Phys Chem C, 2010, 114(40): 16929-16936.
-
[7]
[7] YANG S J, LIU C X, CHANG H Z, MA L, QU Z, YAN N Q, WANG C Z, LI J H. Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: NO reduction versus NH3 oxidization[J]. Ind Eng Chem Res, 2013, 52(16): 5601-5610.
-
[8]
[8] RAMIS G, YI L, BUSCA G, TURCO M, KOTUR E, WILLEY R J. Adsorption, activation and oxidation of ammonia over SCR catalysts[J]. J Catal, 1995, 157(2): 523-535.
-
[9]
[9] YAO G H, WANG F, WANG X B, GUI K T. Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed[J]. Energy, 2010, 35(5): 2295-2300.
-
[10]
[10] YANG S, GUO Y, YAN N, QU Z, XIE J K, YANG C, JIA J P. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures[J]. J Hazardous Mater, 2011, 186(1): 508-515.
-
[11]
[11] 赵莉, 何青松, 李琳, 陆强, 董长青, 杨勇平. 改性SCR催化剂对Hg0催化氧化性能的研究[J]. 燃料化学学报, 2015, 43(5): 628-634. (ZHAO Li, HE Qing-song, LI Lin, LU Qiang, DONG Chang-qing, YANG Yong-ping. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. J Fuel Chem Technol, 2015, 43(5): 628-634.)
-
[12]
[12] CHANG H Z, LI J H, CHEN X Y, MA L, YANG S J, SCHWANK J W, HAO J M. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2[J]. Catal Commun, 2012, 27: 54-57.
-
[13]
[13] LIU C X, CHEN L, CHANG H Z, MA L, PENG Y, ARANDIYAN H R, LI J H. Characterization of CeO2-WO3 catalysts prepared by different methods for selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2013, 40: 145-148.
-
[14]
[14] WANG C Z, YANG S J, CHANG H Z, PENG Y, LI J H. Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3[J]. J Molecular Catal A, 2013, 376: 13-21.
-
[15]
[15] LI X L, LI Y H, DENG S S, RONG T A. A Ce-Sn-Ox catalyst for the selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2013, 40: 47-50.
-
[16]
[16] XIONG Y, TAND C J, YAO X J, ZHANG L, LI L L, WANG X B, DENG Y, GAO F, DONG L. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Appl Catal A :Gen, 2015, 495: 206-216.
-
[17]
[17] YU M E, LI C T, ZENG G M, ZHOU Y, ZHANG X N, XIE Y E. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2[J]. Appl Surface Sci, 2015, 342: 174-182.
-
[18]
[18] 王栋, 路春美, 张信莉, 刘洪涛, 徐丽婷, 彭建升. 不同沉淀条件制备γ-Fe2O3催化剂的表征及其NH3-SCR性能[J]. 燃烧科学与技术, 2014, 20(3): 245-251. (WANG Dong, LU Chu-mei, ZHANG Xin-li, LIU Hong-tao, XU Li-ting, PENG Jian-shang. De-NOx performance and characterization of γ-Fe2O3 catalysts under various precipitation conditions[J]. J Combust Sci Technol, 2014, 20(3): 245-251.)
-
[19]
[19] 王栋, 张信莉, 路春美, 韩奎华, 彭建升, 徐丽婷. 微波热解制备γ-Fe2O3催化剂及其SCR脱硝性能[J]. 化工学报, 2014, 65(12): 4805-4813. (WANG Dong, ZHANG Xin-li, LU Chu-mei, HAN Kui-hua, PENG Jian-sheng, XU Li-ting. Microwave-assisted preparation of γ-Fe2O3 as SCR catalysts[J]. CIESC J, 2014, 65(12): 4805-4813.)
-
[20]
[20] XIONG Z B, LU C M, GUO D X, ZHANG X L, HAN K H. Selective catalytic reduction of NOxwith NH3 over iron-cerium mixed oxide catalyst: Catalytic performance and characterization[J]. J Chem Technol Biotechnol, 2013, 88(7): 1258-1265.
-
[21]
[21] CHEN T, GUAN B, LIN H, ZHU L. In situ DRIFTS study of the mechanism of low temperature selective catalytic reduction over manganese-iron oxides[J]. Chin J Catal, 2014, 35(3): 294-301.
-
[22]
[22] SHEN B X, WANG F M, LIU T. Homogeneous MnOx-CeO2 pellets prepared by one-step hydrolysis process for low-temperature NH3-SCR[J]. Powder Technol, 2014, 253: 152-157.
-
[23]
[23] 王芳, 姚桂焕, 归柯庭. 铁基催化剂选择性催化还原烟气脱硝特性比较研究[J]. 中国电机工程学报, 2009, 29(29): 47-51. (WANG Fang, YAO Gui-huan, GUI Ke-ting. Comparison about selective catalytic reduction of de-NOx n iron-based magnetic materials[J]. Proceed CSEE, 2009, 29(29): 47-51.)
-
[24]
[24] 高彦杰. 低温选择性催化还原脱硝催化剂的制备及性能研究. 南京: 南京理工大学, 2009. (GAO Yan-jie. Research on the preparation and denitrification performance of low temperature SCR catalyst. Nanjing: Nanjing University of Science & Technology, 2009.)
-
[25]
[25] LIU F D, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J Phys Chem C, 2010, 114(40): 16929-16936.
-
[26]
[26] PIEROTTI R A, ROUQUEROL J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985, 57(4): 603-619.
-
[27]
[27] KOEBEL M, ELSENER M, MADIA G. Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperature[J]. Ind Eng Chem Res, 2001, 40(1): 52-59.
-
[28]
[28] YANG S J, LI J H, WANG C Z, CHEN J H, MA L, CHANG H Z, CHEN L, PENG Y, YAN N Q. Fe-Ti spinel for the selective catalytic reduction of NO with NH3: Mechanism and structure activity relationship[J].Appl Catal B: Environ, 2012, 117-118: 73-80.
-
[1]
-
-
-
[1]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[2]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[3]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
-
[6]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[7]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[8]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[9]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[10]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[11]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[12]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[13]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[14]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
-
[15]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[16]
Xiaofang Li , Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080
-
[17]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[18]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[19]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[20]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(788)
- HTML views(87)