Citation: LI Xiu-ping, ZHAO Rong-xiang, SU Jian-xun, AI dong. Prepartion of phosphotungstic acid functionalized carbon nitride and its catalytic performance in oxidative desulfurization of model oil[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(7): 870-875. shu

Prepartion of phosphotungstic acid functionalized carbon nitride and its catalytic performance in oxidative desulfurization of model oil

  • Corresponding author: ZHAO Rong-xiang, 
  • Received Date: 29 January 2015
    Available Online: 8 April 2015

    Fund Project: 国家自然科学基金 (51276078) (51276078) 国家重点基础研究发展规划(973计划, 2011CB707301)。 (973计划, 2011CB707301)

  • A new phosphotungstic acid functionalized carbon nitride (g-C3N4/HPW) was prepared with carbon nitride and phosphotungstic acid as raw materials. The structure of g-C3N4/HPW was characterized by XRD, FT-IR and SEM; with g-C3N4/HPW as a catalyst, the oxidative desulfurization of model oil containing dibenzothiophene (DBT) was carried out by using hydrogen peroxide as oxidant and imidazolium tetrafluoroborate ionic liquid as extractant. The influences of reaction temperature, catalyst amount, extractant amount, H2O2 amount, type of thiophene on the desulfurization efficiency were investigated. The results indicate that under the optimal reaction conditions, viz., 5 mL model oil, 0.02 g g-C3N4/HPW, 1.0 mL H2O2, 1.5 mL BF4, 70 ℃ and reaction time of 120 min, the desulfurization efficiency reaches 93%. Moreover, there is no significant decrease in the desulfurization activity after the catalyst system was recycled for 4 cycles.
  • 加载中
    1. [1]

      [1] 张存, 王洪娟, 刘涛, 刘晓勤. 模拟油品氧化脱硫及反应动力学研究[J]. 燃料化学学报, 2011, 39(8): 611-614. (ZHANG Cun, WANG Hong-juan, LIU Tao, LIU Xiao-qin. Simulated oil dibenzothiophene solid superacid oxidative desulfurization oxidation kinetics[J]. J Fuel Chem Technol, 2011, 39(8): 611-614.)

    2. [2]

      [2] KULKARNI P S, AFONSO C A M. Deep desulfurization of diesel fuel using ionic liquids: Current status and future challenges[J]. Green Chem, 2010, 12(7): 1139-1149.

    3. [3]

      [3] SRIVASTAVAV C. An evaluation of desulfurization technologies for sulfur removal from liquid fuels[J]. RSC Adv, 2012, 2(3): 759-783.

    4. [4]

      [4] SHU C H, SUN T H, GUO Q B, JIA J P, LOU Z Y. Desulfurization of diesel fuel with nickel boride in situ generated in an ionic liquid[J]. Green Chem, 2014, 16(8): 3881-3889.

    5. [5]

      [5] LI C, JIANG Z X, GAO J B, YANG Y X, WANG S J, TIAN F P, SUN F X, SUN X P, YING P L, HAN C R. Ultra-deep desulfurization of diesel: Oxidation with a recoverable catalyst assembled in emulsion[J]. Chem Eur J, 2004, 10(9): 2277-2280.

    6. [6]

      [6] KOMINTARACHAT C, TRAKARNPRUK W. Oxidative desulfurization using polyoxometalates[J]. Ind Eng Chem Res, 2006, 45(6): 1853-1856.

    7. [7]

      [7] ZHANG S, ZHANG Q. ZHANG Z C. Extractive desulphurization and denitrogenation of fuels using ionic liquids[J]. Ind Eng Chem Res, 2004, 43(2): 614-622.

    8. [8]

      [8] 张金水, 王博, 王心晨. 石墨相氮化碳的合成及应用[J]. 物理化学学报, 2013, 29(9): 1865-1876. (ZHANG Jin-shui, WANG Bo, WANG Xin-chen. Chemical synthesis and applications of graphitic carbon nitride[J]. Acta Phys Chim Sin, 2013, 29(9): 1865-1876.)

    9. [9]

      [9] 张海燕, 代跃利, 蔡蕾. 杂多酸催化剂催化氧化脱硫研究进展[J]. 化工进展, 2013, 32(4): 809-814. (ZHANG Hai-yan, DAI Yue-li, CAI Lei. Research progress of heteropoly acid catalyzed oxidative desulfurization[J]. Chem Ind Eng Prog, 2013, 32(4): 809-814.)

    10. [10]

      [10] COLLINS F M, LUCY A R, SHARP C. Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis[J]. J Mol Catal A: Chem, 1997, 117(1/3): 397-403.

    11. [11]

      [11] YAZU K, YAMAMOTOY, FURUYAT, MIKI K, UKEGAWA K. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil[J]. Energy Fuels, 2001, 15(6): 1535-1536.

    12. [12]

      [12] YAZU K, FURUYA T, MIKI K, UKEGAWA K. Tungstophosphoric acid-catalyzed oxidative desulfurization of light oil with hydrogen peroxide in a light oil/acetic acid biphasic system[J]. Chem Lett, 2003, 32(10): 920-921.

    13. [13]

      [13] 刘日嘉, 王睿. 氨基化中空SiO2杂多化合物复合型催化剂的合成、表征及催化燃油深度脱硫性能[J].高等学校化学学报, 2013, 34(12): 2814-2820. (LIU Ri-jia, WANG Rui. Synthesis, characterization and catalytic fuel ultra-deep desulfurization of hollow amino-SiO2 supported heteropoly compound catalyst[J]. Chem J Chin Univ, 2013, 34(12): 2814-2820.)

    14. [14]

      [14] LUO G Q, KANG L H, ZHU M Y, DAI B. Highly active phosphotungstic acid immobilized on amino functionalized MCM-41 for the oxidesulfurization of dibenzothiophene[J]. Fuel Process Technol, 2014, 118: 20-27.

    15. [15]

      [15] 张金水, 王博, 王心晨. 石墨相氮化碳的化学合成及应用[J]. 物理化学学报, 2013, 29(9): 1865-1876. (ZHANG Jin-shui, WANG Bo, WANG Xin-chen. Chemical synthesis and applications of graphitic carbon nitride[J]. Acta Phys Chim Sin, 2013, 29(9): 1865-1876.)

    16. [16]

      [16] 金瑞瑞, 游继光, 张倩, 刘丹, 胡绍争, 桂建舟. Fe掺杂g-C3N4的制备及其可见光催化性能[J].物理化学学报, 2014, 30(9): 1706-1712. (JIN Rui-rui, YOU Ji-guang, ZHANG Qian, LIU Dan, HU Shao-zheng, GUI Jian-zhou. Preparation of Fe-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Acta Phys Chim Sin, 2014, 30(9): 1706-1712.

    17. [17]

      [17] 李佳慧, 胡嘉, 赵荣祥, 李秀萍. 氨基酸功能化磷钨酸盐的制备及其催化氧化脱硫性能[J]. 燃料化学学报, 2014, 42(11): 1394-1399. (LI Jia-hui, HU Jia, ZHAO Rong-xiang, LI Xiu-ping. Prepartion of amino acid functionalized heteropolyacid salt and its catalytic performance for oxidation desulfurization of model oil[J]. J Fuel Chem Technol, 2014, 42(11): 1394-1399.

    18. [18]

      [18] DAI K, LU L H, LIU Q, ZHU G P, WEI X Q, BAI J, XUAN L L, WANG H. Sonication assisted preparation of graphene oxide/graphitic-C3N4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications[J]. Dalton Trans, 2014, 43(17): 6295-6299.

    19. [19]

      [19] KUMAR S, SURENDAR T, KUMAR B, BARUAHB A, SHANKER V. Synthesis of highly efficient and recyclable visiblelight responsive mesoporous g-C3N4 photocatalyst via facile template-free sonochemical route[J]. RSC Adv, 2014, 4(16): 8132-8137.

    20. [20]

      [20] 陈兰菊, 赵地顺, 郭绍辉. 改性氧化铝负载氧化物催化氧化噻吩的脱硫研究[J].化学学报, 2007, 65(16): 1718-1722. (CHEN Lan-ju, ZHAO Di-shun, GUO Shao-hui. Oxidative desuifurization of thiophene over modified alumina loading oxide[J]. Acta Chim Sinica, 2007, 65(16): 1718-1722.)

    21. [21]

      [21] 刘日嘉, 王睿, VLADIMIR K. Keggin结构杂多酸盐的合成、表征及催化燃油超深度脱硫[J]. 无机化学学报, 2014, 30(3): 563-572. (LIU Ri-jia, WANG Rui, VLADIMIR K. Synthesis, characterization and catalytic fuel ultra-deep desulfurization of keggin-type polyoxometalates[J]. Chin J Inorg Chem, 2014, 30(3): 563-572.)

    22. [22]

      [22] 李宇慧, 冯丽娟, 王景刚, 周旋, 程斌斌, 王晓燕, 李春虎. MoO3/介孔Al2O3催化氧化脱除模拟油中的硫[J].高等学校化学学报, 2011, 32(3): 778-782. (LI Yu-hui, FENG Li-juan, WANG Jing-gang, ZHOU Xuan, CHENG Bin-bin, WANG Xiao-yan, LI Chu-hu. Catalytic oxidative desulfurization of model oil by MoO3/mesoporous Al2O3[J].Chem J Chin Univ, 2011, 32(3): 778-782.)

    23. [23]

      [23] 张薇, 丁永萍, 宫摇敬, 宋溪明. 羧基功能化离子液体催化二苯并噻吩氧化脱硫[J]. 燃料化学学报, 2012, 5(40): 628-632. (ZHANG Wei, DING Yong-ping, GONG Yao-jing, SONG Xi-ming. Oxidative desulfurization of dibenzothiophene catalysed by carboxylfunctionalized ionic liquid CMMIMBF4[J]. J Fuel Chem Technol, 2012, 5(40): 628-632.)

  • 加载中
    1. [1]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    8. [8]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    9. [9]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    12. [12]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    13. [13]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    14. [14]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    15. [15]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    16. [16]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    17. [17]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(0)
  • Abstract views(782)
  • HTML views(79)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return