Citation:
ZU Yun, QIN Yu-cai, GAO Xiong-hou, MO Zhou-sheng, ZHANG Lei, ZHANG Xiao-tong, SONG Li-juan. Mechanisms of thiophene conversion over the modified Y zeolites under catalytic cracking conditions[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(7): 862-869.
-
The mechanisms of thiophene conversion over various Y zeolites, viz., HY, Ni-modified NiY and rare earths metal-modified REY, were investigated under catalytic cracking conditions in a fix-bed reactor. The final products of thiophene conversion were analyzed by using a gas chromatography with flame ionization detector (GC-FID), a gas chromatography with sulfur chemiluminescence detector (GC-SCD) and an in situ infrared spectrometer. The results were then correlated with the acidic properties of the zeolites, which indicated that the mechanisms of thiophene interacting with these Y zeolites are dependent on the state and occurrence mode of the modified metallic cation and/or the extraframework aluminum species, which can modulate the Brnsted and Lewis acidities in the zeolites. For the NiY zeolites, the thiophene molecules are mainly adsorbed on the Lewis acidic sites associated with the NiOH+ species; the species of Ni4AlO43+ and those generated from the Ni2+ and the extraframework aluminum can weaken the Brnsted acidity and then reduce the cracking activity of the zeolite. Polymerization and cracking reactions are observed for the conversion of thiophene over the HY and REY zeolites. For the HY zeolites, 2,2',5',2''-terthiophene can be found, which is ascribed to the Brnsted acid sites adjacent to extraframework aluminum species (AlO+ or so on); some subsequent reactions of hydrogen transfer and cracking can also be detected. Over the REY zeolite, hydrogen transfer and cracking reactions of thiophene oligomer species derived on the Brnsted acid sites adjacent to extraframework aluminum species (Al(OH)2+, Al(OH)2+ and so on) can be promoted by the Lewis acid center related to the RE species.
-
Keywords:
- thiophene,
- modified Y zeolite,
- catalytic cracking,
- acidity,
- reaction mechanism
-
-
-
[1]
[1] 殷长龙, 夏道宏. 催化裂化汽油中类型硫含量分布[J]. 燃料化学学报, 2001, 29(3): 256-258. (YIN Chang-long, XIA Dao-hong. Distribution of sulfur compounds in the full-range FCC and RFCC gasoline[J]. J Fuel Chem Technol, 2001, 29(3): 256-258.)
-
[2]
[2] WHITING G T, MEIRER F, VALENCIA D, WECKHUYSEN BERT M. Selective staining of Brönsted acidity in zeolite ZSM-5-based catalyst extrudates using thiophene as a probe[J]. Phys Chem Chem Phys, 2014, 16(39): 21531-21542.
-
[3]
[3] JAIMES L, DE LASA H. Catalytic conversion of thiophene under mild conditions over a ZSM-5 catalyst. A kinetic model[J]. Ind Eng Chem Res, 2009, 48(16): 7505-7516.
-
[4]
[4] Yu S Y, WAKU T, IGLESIA E. Catalytic desulfurization of thiophene on H-ZSM5 using alkanes as co-reactants[J]. Appl Catal A: Gen, 2003, 242(1): 111-121.
-
[5]
[5] POTAPENKO O V, DORONIN V P, SOROKINA T P. Transformations of thiophene compounds under catalytic cracking conditions[J]. Appl Catal B: Environ, 2012, 117: 177-184.
-
[6]
[6] 山红红, 李春义, 赵辉, 杨朝合, 张建芳. 噻吩在USY沸石上的裂化脱硫反应机理探索[J]. 燃烧化学报, 2001, 29(6): 481-485. (SHAN Hong-hong, LI Chun-yi, ZHAO Hui, YANG Chao-he, ZHANG Jian-fang. Discussions on the mechanism of thiophene cracking over a USY zeolite[J]. J Fuel Chem Technol, 2001, 29(6): 481-485.)
-
[7]
[7] LI B, GUO W, YUAN S, HU J, WANG J, JIAO H. A theoretical investigation into the thiophene-cracking mechanism over pure Brönsted acidic zeolites[J]. J Catal, 2008, 253(1): 212-220.
-
[8]
[8] PANG X, ZHANG L, SUN S, LIU T, GAO X. Effects of metal modifications of Y zeolites on sulfur reduction performance in fluid catalytic cracking process[J]. Catal Today, 2007, 125(3): 173-177.
-
[9]
[9] 秦玉才, 高雄厚, 裴婷婷, 郑兰歌, 王琳, 莫周胜, 宋丽娟. 噻吩在稀土离子改性 Y 型分子筛上吸附与催化转化研究[J]. 燃料化学学报, 2013, 41(7): 889-896. (QIN Yu-cai, GAO Xiong-hou, PEI Ting-ting, ZHENG Lan-ge, WANG Lin, MO Zhou-sheng, SONG Li-juan. Adsorption and catalytic conversion of thiophene on Y-type zeolites modified with rare-earth metal ions[J]. J Fuel Chem Technol, 2013, 41(7): 889-896.)
-
[10]
[10] 张畅, 秦玉才, 高雄厚, 张海涛, 莫周胜, 初春雨, 张晓彤, 宋丽娟. Ce 改性对 Y 型分子筛酸性及其催化转化性能的调变机制[J]. 物理化学学报, 2015, 31(2): 344-352. (ZHANG Chang, QIN Yu-cai, GAO Xiong-hou, ZHANG Hai-tao, MO Zhou-sheng, CHU Chun-yu, ZHANG Xiao-tong, SONG Li-juan. Modulation mechanisms of the acidity and catalytic properties of Y zeolites modified by cerium cations[J]. Acta Phys Chim Sin, 2015, 31(2): 344-352.)
-
[11]
[11] NIWA M, SUZUKI K, ISAMOTO K. Identification and measurements of strong brφnsted acid site in ultrastable Y (USY) zeolite[J]. J Phys Chem B, 2006, 110(1): 264-269.
-
[12]
[12] DATKA J, GIL B, BARAN P. IR study of heterogeneity of OH groups in zeolite HY-splitting of OH and OD bands[J]. J Mol Struct, 2003, 645(1): 45-49.
-
[13]
[13] ALMUTAIRI S M T, MEZARI B, FILONENKO G A. Influence of extraframework aluminum on the Brφnsted acidity and catalytic reactivity of faujasite zeolite[J]. Chem Cat Chem, 2013, 5(2): 452-466.
-
[14]
[14] LI S, ZHENG A, SU Y, ZHANG H, CHEN L, YANG J, YE C, DENG F. Brφnsted/Lewis acid synergy in dealuminated HY zeolite: A combined solid-state NMR and theoretical calculation study[J]. J Am Chem Soc, 2007, 129(36): 11161-11171.
-
[15]
[15] LI S, ZHENG A, SU Y, FANG H, SHEN W, YU Z, CHEN L, DENG F. Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations[J]. Phys Chem Chem Phys, 2010, 12(15): 3895-3903.
-
[16]
[16] WARD J W. Spectroscopic study of the surface of zeolite Y. II. Infrared spectra of structural hydroxyl groups and adsorbed water on alkali, alkaline earth, and rare earth ion-exchanged zeolites[J]. J Phys Chem, 1968, 72(12): 4211-4223.
-
[17]
[17] WARD J W. Spectroscopic study of the surface of zeolite Y. Part 4.—Infrared studies of structural hydroxyl groups and adsorbed water on some transition metal ion-exchanged zeolites[J]. Trans Faraday Soc, 1971, 67: 1489-1499.
-
[18]
[18] 宋丽娟, 潘明雪, 秦玉才, 鞠秀芳, 段林海, 陈晓陆. NiY 分子筛选择性吸附脱硫性能及作用机理[J]. 高等学校化学学报, 2011, 32(3): 787-792. (SONG Li-juan, PAN Ming-xue, QIN Yu-cai, JU Xiu-fang, DUAN Lin-hai, CHEN Xiao-lu. Selective adsorption desulfurization performance and adsorptive mechanisms of NiY zeolites[J]. Chem J Chin Univ, 2011, 32(3): 787-792.)
-
[19]
[19] 董世伟, 秦玉才, 阮艳军, 王源, 于文广, 张磊, 范跃超, 宋丽娟. 改性 Y 型分子筛对 FCC 汽油脱硫性能的研究[J]. 燃料化学学报, 2013, 41(3): 341-346. (DONG Shi-wei, QIN Yu-cai, RUAN Yan-jun, WANG Yuan, YU Wen-guang, ZHANG Lei, FAN Yue-chao, SONG Li-juan. Performance of adsorptive desulfurization for FCC gasoline over modified Y zeolites[J]. J Fuel Chem Technol, 2013, 41(3): 341-346.)
-
[20]
[20] MIGDAL M A, MIKULI E, DZIEMBAJ R, MAJDA D, HETMANCZYK L. Thermal decomposition of (NO3)2, (NO3)2 and (NO3)2[J]. Thermochim Acta, 2004, 419(1): 223-229.
-
[21]
[21] 李宣文, 佘励勤, 刘兴云. LaHY 表面与NaOH 的作用及酸性表面性质研究[J].催化学报, 1983, 4(1): 43-50. (LI Xuan-wen, SHE Li-qin, LIU Xing-yun. Studies on the interaction between NaOH and acidic sites on LaHY surface and the nature of acidic surface of LaHY[J]. Chin J Catal, 1983, 4(1): 43-50.)
-
[22]
[22] SEO S M, PARK M, CHUNG D Y, LIM W T. Preparation of excessively Ni2+-exchanged zeolite Y (FAU, Si/Al=1.70) and its single-crystal structure[J]. J Porous Mater, 2014, 21(5): 521-530.
-
[23]
[23] NIWA M, SUZUKI K, ISAMOTO K, KATADA N. Identification and measurements of strong brφnsted acid site in ultrastable Y (USY) zeolite[J]. J Phys Chem B, 2006, 110(1): 264-269.
-
[24]
[24] EISENBACH D, GALLEI E. Infrared spectroscopic investigations relating to coke formation on zeolites: I. Adsorption of hexene-1 and n-hexane on zeolites of type Y[J]. J Catal, 1979, 56(3): 377-389.
-
[25]
[25] SHI Y, ZHANG W, ZHANG H, TIAN F, JIA C, CHEN Y. Effect of cyclohexene on thiophene adsorption over NaY and LaNaY zeolites[J]. Fuel Process Technol, 2013, 110: 24-32.
-
[1]
-
-
-
[1]
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
-
[2]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[3]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[4]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[5]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[6]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[7]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[8]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[9]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
-
[10]
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
-
[11]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[12]
Shuang Meng , Haixin Long , Zhou Zhou , Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008
-
[13]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[14]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
-
[15]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
-
[16]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[17]
Zhonghua Xi , Xuanfeng Kong , Jinyue Yang , Bin Liu , Tingyu Zhu , Hui Zhang , Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123
-
[18]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[19]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[20]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(383)
- HTML views(41)