Citation: GONG Jing-jing, LI Shu-chao, ZHOU Hua-lan, XU Bo-lian, FAN Yi-ning. Promotional effect of Na+ in the supported PtSnNa/SUZ-4 catalysts for propane dehydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(7): 857-861. shu

Promotional effect of Na+ in the supported PtSnNa/SUZ-4 catalysts for propane dehydrogenation

  • Corresponding author: FAN Yi-ning, 
  • Received Date: 18 March 2015
    Available Online: 29 May 2015

  • The promotional effects of Na+ component in the supported PtSnNa/SUZ-4 catalysts for propane dehydrogenation have been studied by using X-ray diffraction (XRD), H2 chemisorption, NH3 temperature-programmed desorption (NH3-TPD) and H2 temperature-programmed reduction (H2-TPR) combined with microreator tests. It has been shown that Na+ component in the supported PtSnNa/SUZ-4 catalysts can neutralize the strong acidic sites on the surface of SUZ-4 zeolite support, increasing the Pt dispersion and suppressing the cracking of olefin products and the formation of coke, leading to the increases of propene selectivity and catalytic stability. But, excessive Na+ ions in the catalyst decreases the interaction between Sn component and SUZ-4 zeolite support, resulting in the drastic decrease of catalytic activity for propane dehydrogenation.
  • 加载中
    1. [1]

      [1] JUEZ I A, BEALE A M, MAAIJEN K, WENG T C, GLATZEL P, WECKHUYSEN B M. A combined in situ time-resolved UV-Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions[J]. J Catal, 2010, 276(2): 268-279.

    2. [2]

      [2] KUMAR S M, CHEN D, HOLMEN A, WALMSLEY J C. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15: Effect of Sn on the dispersion of Pt and catalytic behavior[J]. Catal Today, 2009, 142(1/2): 17-23.

    3. [3]

      [3] ZHANG Y W, ZHOU Y M, SHI J J, ZHOU S J, SHENG X L, ZHANG Z W, XIANG S M. Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation[J]. J Mol Catal A: Chem, 2014, 381: 138-147.

    4. [4]

      [4] HUANG L H, XU B L, YANG L L, FAN Y N. Propane dehydrogenation over the PtSn catalyst supported on alumina-modified SBA-15[J]. Catal Commun, 2008, 9(15): 2593-2597.

    5. [5]

      [5] 黄丽华, 杨利利, 许波连, 范以宁. PtSn/Al2O3/MCM-41催化剂的丙烷脱氢催化性能[J]. 物理化学学报, 2008, 24(7): 1297-1301. (HUANG Li-hua, YANG Li-li, XU Bo-lian, FAN Yi-ning. Catalytic properties of PtSn/Al2O3/MCM-41 catalysts for propane dehydrogenation[J]. Acta Phys Chim Sin, 2008, 24(7): 1297-1301.)

    6. [6]

      [6] NAWAZ Z, TANG X P, ZHANG Q, WANG D Z, FEI W. SAPO-34 supported Pt-Sn-based novel catalyst for propane dehydrogenation to propylene[J]. Catal Commun, 2009, 10(14): 1925-1930.

    7. [7]

      [7] GUJAR A C, MOYE A A, COGHILL P A, TEETERS D C, ROBERTS K P, PRICE G L. Raman investigation of the SUZ-4 zeolite[J]. Mickoporous Mesoporous Mater, 2005, 78(2/3): 131-137.

    8. [8]

      [8] ZHANG Y W, ZHOU Y M, QIU A D, WANG Y, XU Y, WU P C. Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter[J]. Catal Commun, 2006, 7(11): 860-866.

    9. [9]

      [9] ZHOU H L, WU Y J, ZHANG W, WANG J. Static hydrothermal crystallization of SUZ-4 zeolite in the presence of seed and tetraethylammonium hydroxide[J]. J Mater Chem Phys, 2012, 134(2/3): 651-656.

    10. [10]

      [10] KINOSHITA K. Differential thermal analysis of PtO2/carbon[J]. Thermochim Acta, 1977, 20(3): 297-308.

    11. [11]

      [11] BURCH R. Platinum-tin reforming catalysts: I. The oxidation state of tin and the interaction between platinum and tin[J]. J Catal, 1981, 71(2): 348-359.

    12. [12]

      [12] 杨维慎, 吴荣安, 林励吾. 丙烷在负载型催化剂上脱氢反应的研究III[J]. 燃料化学学报, 1991, 19(3): 200-207. (YANG Wei-shen, WU Rong-an, LIN Li-wu. Investigation on dehydrogenation of propane over supported bi-component catalysts III[J]. J Fuel Chem Technol, 1991, 19(3): 200-207.)

    13. [13]

      [13] 杨维慎, 吴荣安, 林励吾. 丙烷在负载型催化剂上脱氢反应的研究IV[J]. 燃料化学学报, 1991, 19(4): 312-319. (YANG Wei-shen, WU Rong-an, LIN Li-wu. Investigation on dehydrogenation of propane over supported bi-component catalysts IV[J]. J Fuel Chem Technol, 1991, 19(4): 312-319.)

  • 加载中
    1. [1]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    7. [7]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(0)
  • Abstract views(302)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return