Citation:
TU Jun-ling, XU Yong-jun, DING Ming-yue, WANG Tie-jun, MA Long-long, WANG Min-long. Preparation of nano-structured Fe3O4 catalysts and their performance in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(7): 839-845.
-
Two shape-defined nano-structured Fe3O4 catalysts such as Nano-Microsphere (FNM) and Nano-Flake (FNF) were prepared by a simple solvothermal method. The effects of precursor type on Fe3O4 crystal morphology was studied. It is found that the rate of nucleation and crystal growth have a crucial influence on the particle morphology. Compared to the traditional Fe catalyst, the shape-defined nano Fe3O4 catalysts could be easily reduced and transferred into active phases, resulting in higher Fischer-Tropsch synthesis (F-T) activity and C5+ selectivity. Especially, the FNM catalyst displayed higher catalytic activity and stability than the FNF catalyst. It was found that the FNF catalyst was more favorable to agglomeration because of shape change of the flakes. In addition, the results indicate that the hydrocarbon selectivity is strongly affected by the particle morphology.
-
-
-
[1]
[1] DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(3/4): 227-241.
-
[2]
[2] LIU Z P, HU P. A new insight into Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2002, 124(39): 11568-11569.
-
[3]
[3] JAHANGIRI H, BENNETT J, MAHJOUBI P, WILSON K, GU S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas[J]. Catal Sci Technol, 2014, 4(8): 2210-2229.
-
[4]
[4] STEYNBERG A, DRY M. Fischer-Tropsch technology[M]. Elsevier, Amsterdam, 2004.
-
[5]
[5] DAVIS B H, OCCELLI M L. Fischer-Tropsch synthesis, catalysts and catalysis[M]. Elsevier, Amsterdam, 2006.
-
[6]
[6] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. Chem Cat Chem, 2010, 2(9): 1030-1058.
-
[7]
[7] BELL A T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691.
-
[8]
[8] MURZIN D Y. Size-dependent heterogeneous catalytic kinetics[J]. J Mol Catal A: Chem, 2010, 315(2): 226-230.
-
[9]
[9] SHROFF M D, KALAKKAD D S, COULTER K E, KOHLER S D, HARRINGTON M S, JACKSON N B, SAULT A G, DATYE A K. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995, 156(2): 185-207.
-
[10]
[10] OBRIEN R J, XU L G, SPICER R L, DAVIS B H. Activation study of precipitated iron Fischer-Tropsch catalysts[J]. Energy Fuel, 1996, 10(4): 921-926.
-
[11]
[11] RIEDEL T, SCHULZ H, SCHAUB G, JUN K W, HWANG J S, LEE K W. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases: The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst[J]. Top Catal, 2003, 26(1/4): 41-54.
-
[12]
[12] BRATLIE K M, LEE H, KOMVOPOULOS K, YANG P D, SOMORJAI G A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity[J]. Nano Lett, 2007, 7(10): 3097-3101.
-
[13]
[13] YANG C, ZHAO H B, HOU Y L, MA D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2012, 134(38): 15814-15821.
-
[14]
[14] CALDERONE V R, SHIJU N R, CURULLA-FERRE D, CHAMBREY S, KHODAKOV A, ROSE A, THIESSEN J, JESS A, ROTHENBERG G. De novo design of nanostructured iron-cobalt Fischer-Tropsch catalysts [J]. Angew Chem Int Edit, 2013, 52(16): 4397-4401.
-
[15]
[15] PATZKE G R, ZHOU Y, KONTIC R, CONRAD F. Oxide nanomaterials: Synthetic developments, mechanistic studies, and technological innovations[J]. Angew Chem Int Edit, 2011, 50(4): 826-859.
-
[16]
[16] POLARZ S. Shape matters: Anisotropy of the morphology of inorganic colloidal particles-synthesis and function[J]. Adv Funct Mater, 2011, 21(17): 3214-3230.
-
[17]
[17] CHEN M, WU B H, YANG J, ZHENG N F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals[J]. Adv Mat, 2012, 24(7): 862-879.
-
[18]
[18] SCHMIDT E, VARGAS A, MALLAT T, BAIKER A. Shape-selective enantioselective hydrogenation on Pt nanoparticles[J]. J Am Chem Soc, 2009, 131(34): 12358-12367.
-
[19]
[19] VAN BOKHOVEN J A. Understanding structure-performance relationships in oxidic catalysts: Controlling shape and tuning performance[J]. ChemCatChem, 2009, 1(3): 363-364.
-
[20]
[20] XIE X W, SHEN W J. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance[J]. Nanoscale, 2009, 1(1): 50-60.
-
[21]
[21] ZHOU K B, LI Y D. Catalysis based on nanocrystals with well-defined Facets[J]. Angew Chem Int Edit, 2012, 51(3): 602-613.
-
[22]
[22] BUKUR D B, MUKESH D, PATEL S A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Ind Eng Chem Res, 1990, 29(2): 194-204.
-
[23]
[23] LAMER V K. Nucleation in phase transitions[J]. Ind Eng Chem, 1952, 44(6): 1270-1277.
-
[24]
[24] LUO M S, O'BRIEN R, DAVIS B H. Effect of palladium on iron Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2004, 98(1): 17-22.
-
[25]
[25] KANG S H, BAE J W, PRASAD P S S, JUN K W. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catal Lett, 2008, 125(3/4): 264-270.
-
[26]
[26] DAVIS B H. Fischer-Tropsch synthesis: Reaction mechanisms for iron catalysts[J]. Catal Today, 2009, 141(1-2): 25-33.
-
[27]
[27] HERRANZ T, ROJAS S, PEREZ-ALONSO F J, OJEDA M, TERREROS P, FIERRO J L G. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. J Catal, 2006, 243(1): 199-211.
-
[28]
[28] GALVIS H M T, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc, 2012, 134(39): 16207-16215.
-
[1]
-
-
-
[1]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[2]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[3]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[4]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[5]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[6]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[7]
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347
-
[8]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[9]
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
-
[10]
Qinwen Zheng , Xin Liu , Lintao Tian , Yi Zhou , Libing Liao , Guocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771
-
[11]
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
-
[12]
Xiaofang Li , Zhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080
-
[13]
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
-
[14]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[15]
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
-
[16]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[17]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[20]
Qi Wu , Changhua Wang , Yingying Li , Xintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(428)
- HTML views(25)