Citation: SUN Yong-shi, WU Bao-shan, LI Yong-wang. Promoting effects of Cu, Ni, Ru and Pt on Fe-based catalysts in Fischer-Tropsch[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(7): 829-838. shu

Promoting effects of Cu, Ni, Ru and Pt on Fe-based catalysts in Fischer-Tropsch

  • Corresponding author: WU Bao-shan, 
  • Received Date: 27 January 2015
    Available Online: 3 March 2015

    Fund Project: 国家重点基础研究发展规划(973计划, 2011CB201401) (973计划, 2011CB201401) 中国科学院知识创新工程项目(KJCX2-YW-N41)。 (KJCX2-YW-N41)

  • The promoting effects of Cu, Ni, Ru and Pt on Fe-based catalysts in Fischer-Tropsch Synthesis were investigated. XRD results indicated that both Cu and Ni can enhance the dispersion of fresh catalysts. XPS results showed that all these metal promoters are enriched on the catalyst surface, whereas four promoters are different in their electronic interaction strength with Fe. H2-TPR results suggested that Cu, Ru and Pt can be reduced at first to corresponding metal species, which can then promote the reduction of Fe2O3 to Fe3O4 significantly; however, the influence of Ni on catalyst reduction is of less significance. CO-TPD results illustrated that the addition of the Cu, Pt and Ni can improve the adsorption of CO on the catalysts. The performances of these catalysts in Fischer-Tropsch synthesis was evaluated in a fixed-bed reactor, which indicated that the activity of CO hydrogenation is enhanced through the addition of these metal promoters; the activity of related catalysts follows the order of Fe3Cu > Fe3Pt > Fe3Ni > Fe3Ru > Fe, whereas the selectivity to CH4 increases in the order of Fe3Ni > Fe3Ru > Fe3Cu > Fe3Pt > Fe.
  • 加载中
    1. [1]

      [1] DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(3/4): 227-241.

    2. [2]

      [2] DRY M E. Present and future applications of the Fischer-Tropsch process[J]. Appl Catal A: Gen, 2004, 276 (1): 1-3.

    3. [3]

      [3] JIN Y M, DATYE A K. Phase transformations in iron Fischer-Tropsch catalysts during temperature-programmed reduction[J]. J Catal, 2000, 196(1): 8-17.

    4. [4]

      [4] BUKUR D B, CARRETO-VAZQUEZ V H, MA W. Catalytic performance and attrition strength of spray-dried iron catalysts for slurry phase Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2010, 388(1/2): 240-247.

    5. [5]

      [5] BLIGAARD T, NORSKOV J K, DAHL S, MATTHIESEN J, CHRISTENSEN C H, SEHESTED J. The Brφnsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J Catal, 2004, 224(1): 206-217.

    6. [6]

      [6] VANNICE M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the Group VIII metals: The catalytic behavior of silica-supported metals[J]. J Catal, 1977, 50(2): 228-236.

    7. [7]

      [7] LI T Z, WANG H L, YANG Y, XIANG H W, LI Y W. Study on an iron-nickel bimetallic Fischer-Tropsch synthesis catalyst[J]. Fuel Process Technol, 2014, 118: 117-124.

    8. [8]

      [8] SMIT E, BEALE A M, NIKITENKO S, WECKHUYSEN B M. Local and long range order in promoted iron-based Fischer-Tropsch catalysts: A combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study[J]. J Catal, 2009, 262(2): 244-256.

    9. [9]

      [9] BAHOME M C, JEWELL L L, PADAYACHY K, HILDEBRANDT D, GLASSER D, DATYE A K, COVILLE N J. Fe-Ru small particle bimetallic catalysts supported on carbon nanotubes for use in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2007, 328(2): 243-251.

    10. [10]

      [10] CALDERONE V R, CALDERONE, SHIJU N R, FERR D C, ROTHENBERGA G. Biemetallc catalysts for the Fischer-Tropsch reaction[J]. Green Chem, 2011, 13(8): 1925-2216.

    11. [11]

      [11] ZHANG C H, YANG Y, TENG B T, LI T Z, ZHENG H Y, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006, 237(2): 405-415.

    12. [12]

      [12] KÖLBEL H, RALEK M. The Fischer-Tropsch synthesis in the liquid phase[J]. Catal Rev Sci Eng, 1980, 21(2): 226.

    13. [13]

      [13] BUKUR D B, MUKESH D S, PATAL A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Ind Eng Chem Res, 1990, 29(2): 194-204.

    14. [14]

      [14] WIELERS A F H, HOP C E C A, BEIJNUM J, KRAAN A M, GEUS J W. On the properties of silica-supported bimetallic Fe-Cu catalysts Part I: Preparation and characterization[J]. J Catal, 1990, 121(2): 364-374.

    15. [15]

      [15] VANNICE M A, GARTEN R L. Metal-support effects on the activity and selectivity of Ni catalysts in CO/ H2 synthesis reactions[J]. J Catal, 1979, 56(2): 236-248.

    16. [16]

      [16] VANNICE M A, GARTEN R L. CO hydrogenation reactions over titania-supported nickel[J]. J Catal, 1980, 66(1): 242-247.

    17. [17]

      [17] UNMUTH E E, SCHWARTZ L H, BUTT J B. Iron alloy Fischer-Tropsch catalysts: I: Carburization studies of the Fe-Ni system[J]. J Catal, 1980, 63(2): 404-414.

    18. [18]

      [18] NAGORNY K, BUBERT S. Mössbauer spectroscopic investigations of bimetallic FeCo, FeNi, and FeRu model catalysts supported on magnesium hydroxide carbonate[J]. J Catal, 1987, 108(1): 112-134.

    19. [19]

      [19] TAKAHARA I, MURATE K, SATO K, MIURA Y, INABA M. Activity and deactivation nature of Ru/MnCO3 catalysts for Fischer-Tropsch reaction[J]. Appl Catal A: Gen, 2013, 450(1): 80-87.

    20. [20]

      [20] WANG L L, WU B S, LI Y W. Effects of Ru and Cu promoters on Fischer-Tropsch synthesis over Fe-based catalysts[J]. Chin J Catal, 2011, 32(3): 495-501.

    21. [21]

      [21] HUBER G W, BARTHOLOMEW H. Pt-Promotion of Co/SiO2 Fischer-Tropsch synthesis catalysts[J]. Stud Surf Sci Catal, 2001, 136(2): 283-288.

    22. [22]

      [22] TSUBAKI N, SUN S L, FUJIMOTO K. Different functions of the noble metals added to cobalt catalysts for Fischer-Tropsch synthesis[J]. J Catal, 2001, 199(2): 236-246.

    23. [23]

      [23] XU J, BARTHOLOMEWA C H, SUDWEEKSB J, EGGETTB D L. Design, synthesis, and catalytic properties of silica-supported, Pt-promoted iron Fischer-Tropsch catalysts[J]. Top Catal, 2003, 26(1): 55-71.

    24. [24]

      [24] YU W Q, WU B S, XU J, TAO Z C, XIANG H W, LI Y W. Effects of Pt impregnation on a precipitated iron-based Fischer-Tropsch synthesis catalyats[J]. Catal Lett, 2008, 125(1/2): 116-122.

    25. [25]

      [25] BIESINGER M C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn[J]. Appl Surf Sci, 2010, 257(7): 887-898.

    26. [26]

      [26] SILVAIN J F, CHAZELAS J, TROMBERT S. Copper electroless deposition on NiTi shape memory alloy: An XPS study of Sn-Pd-Cu growth[J]. Appl Surf Sci, 2000, 153(4): 211-217.

    27. [27]

      [27] FIERMANS L, GRYSE R D, DONCKER G D, JACOBS P A, MARTENSJ A. Pd segregation to the surface of bimetallic Pt-Pd particles supported on H-β zeolite evidenced with X-Ray photoelectron spectroscopy and argon cation bombardment[J]. J Catal, 2000, 193 (1): 108-114.

    28. [28]

      [28] LEWERA A, ZHOU W P, VERICAT C, CHUNG J H, HASCH R, WIECKOWSKI A, BAGUS P S. XPS and reactivity study of bimetallic nanoparticlescontaining Ru and Pt supported on a gold disk[J]. Electrochim Acta, 2006, 51(19): 3950-3956.

    29. [29]

      [29] WACHS I E, DUYER D J, IGLESIA E. Characterization of Fe, Fe-Cu, And Fe-Ag fischer-tropsch catalysts[J]. Appl Catal, 1984, 12(2): 201-217.

    30. [30]

      [30] SMIT E, GROOT F M F, BLUME R, HAVECKER M, KNOP-GERICKE A, WECKHUYSEN B M. The role of Cu on the reduction behavior and surface properties of Fe-based Fischer-Tropsch catalysts[J]. Phys Chem Chem Phys, 2010, 12(6): 667-680.

    31. [31]

      [31] GUCZI L, KIRICSI I. Zeolite supported mono-and bimetallic systems: Structure and performance as CO hydrogenation catalysts[J]. Appl Catal A: Gen, 1999, 186(1/2): 375-394.

    32. [32]

      [32] GUCZI L, BECK A, HORVATH A, HORVATH D. From molecular clusters to metal nanoparticles[J]. Top Catal, 2002, 19(1): 157-163.

    33. [33]

      [33] LI X C, WU M, LAI Z H, HE F. Studies on nickel-based catalysts for carbon dioxide reforming of methane[J]. Appl Catal A: Gen, 2005, 290(1/2): 81-86.

    34. [34]

      [34] BENZIGER J, MADIX R J. The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100)[J]. Surf Sci, 1980, 94(1): 119-153.

    35. [35]

      [35] 黄仲涛, 耿建铭. 工业催化[M]. 第二版. 北京: 化学工业出版社, 2006. (HUANG Zhong-tao, GENG Jian-min. Industral catalysis[M]. 2en ed.Beijing: Chemical Industry Press, 2006.)

    36. [36]

      [36] DRY M E, SHINGLES T, BOSHOFF L J, OOSTHUIZEN G J. Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis[J]. J Catal, 1969, 15(2): 190-199.

    37. [37]

      [37] HEXANA W M, COVILLE N J. Indium as a chemical promoter in Fe-based Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2010, 377(1/2): 150-157.

    38. [38]

      [38] MA W P, KUGLE E L, DADYBURJOR D B. Promotional effect of copper on activity and selectivity to hydrocarbons and oxygenates for Fischer-Tropsch synthesis over potassium-promoted iron catalysts supported on activated carbon[J]. Energy Fuels, 2011, 25(5): 1931-1938.

    39. [39]

      [39] RAUPP G B AND DELGASS W N. Mössbauer investigation of supported Fe and FeNi catalysts: II. Carbides formed Fischer-Tropsch synthesis[J]. J Catal, 1979, 58(3): 348-360.

    40. [40]

      [40] MILLER D G, MOSKOVITS M. A study of the effects of potassium addition to supported iron catalysts in the Fischer-Tropsch reaction[J]. J Phys Chem, 1988, 92(21): 6081-6085.

    41. [41]

      [41] LI S, LI A, KRISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001, 77(4): 197-205.

    42. [42]

      [42] 张成华, 杨勇, 陶智超, 相宏伟, 李永旺. Ni助剂FeMnK/SiO2费托合成催化剂的结构性质及还原碳化行为研究[J]. 燃料化学学报, 2006, 34(6): 695-699. (ZHANG Cheng-hua, YANG Yong, TAO Zhi-chao, XIANG Hong-wei, LI Yong-wang. Structural properties and reduction behavior of Ni promoted FeMnK/SiO2 catalysts for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol, 2006, 34(6): 695-699.)

    43. [43]

      [43] 余伟奇. 贵金属改性铁基催化剂的制备、表征及F-T合成反应性能研究. 太原: 中国科学院山西煤炭化学研究所, 2009. (YU Wei-qi. Preparation, characterization and Fischer-Tropsch synthesis performance of nobel metal modified iron-based catalysts.Taiyuan: Institute of Coal Chemistry, Chinese Academy of Science, 2009.)

    44. [44]

      [44] MA W P, KUGLE E L, DADYBURJOR D B. Potassium effects on activated-carbon-supported iron catalysts for Fischer-Tropsch synthesis[J]. Energy Fuels, 2007, 21(4): 1832-1842.

  • 加载中
    1. [1]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    2. [2]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    14. [14]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    15. [15]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    20. [20]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

Metrics
  • PDF Downloads(0)
  • Abstract views(517)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return