Citation: LI Lan-lan, ZHENG An-qing, FENG Yi-peng, MENG Jun-guang, ZHAO Zeng-li, LI Hai-bin. Effects of olivine on catalytic reforming of toluene[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(7): 806-815. shu

Effects of olivine on catalytic reforming of toluene

  • Corresponding author: ZHAO Zeng-li, 
  • Received Date: 20 January 2015
    Available Online: 19 March 2015

    Fund Project: 国家自然科学基金(51376186, 21406227) (51376186, 21406227) 广东省科技计划项目(2012B050500007)。 (2012B050500007)

  • With toluene as the model compound of tar from biomass gasification, the catalytic properties of olivine and nickel catalysts supported on the olivine were analyzed for its performance on the reactions of toluene cracking and toluene/steam reforming in a fixed bed reactor. The catalysts were characterized by SEM, BET, XRD, and H2-TPR. The results show that calcination changes the physical and chemical characteristics of the raw ore. The olivine catalysts show a catalytic activity on the reactions of catalytic cracking and steam reforming of toluene. However, with the addition of Ni the catalytic activity for toluene cracking reaction decreases, the toluene conversion rate reduces by 2.2%~9.8%; while the catalytic activity for toluene/steam reforming reaction rise obviously, the toluene conversion rate reaches up to 97.0%, and nickel catalyst supported on olivine shows great stability in steam reforming of toluene.
  • 加载中
    1. [1]

      [1] 龚媛媛, 石金明, 林敏, 王歆. 生物质焦油的特性及其净化研究现状[J]. 能源研究与管理, 2013, (4): 19-24. (GONG Yuan-yuan, SHI Jin-ming, LIN Min, WANG Xin. Characteristics of biomass tar and research status on its purification[J]. Energy Res Manage, 2013, (4): 19-24.)

    2. [2]

      [2] SUN Y J, JIANG J C, KANTARELIS E, XU J M, LI L N, ZHAO S H, YANG W H. Development of a bimetallic dolomite based tar cracking catalyst[J]. Catal Commun, 2012, 20: 36-40.

    3. [3]

      [3] FURUSAWA T, SAITO K, KORI Y, MIURA Y, SATO M, SUZUKI N. Steam reforming of naphthalene/benzene with various types of Pt- based and Ni-based catalysts for hydrogen production[J]. Fuel, 2013, 103: 111-121.

    4. [4]

      [4] CORELLA J, TOLEDO J M, PADILLA R. Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: Which is better[J]? Energy Fuels, 2004, 18(3): 713-720.

    5. [5]

      [5] DEVI L, CRAJE M, THVNE P, PTASINSKI K J, JANSSEN F J J G. Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization[J]. Appl Catal A: Gen, 2005, 294(1): 68-79.

    6. [6]

      [6] DEVI L, PTASINSKI K J, JANSSEN F J J G, PAASEN S V B, BERGMAN P C A, KIEL J H A. Catalytic decomposition of biomass tars: Use of dolomite and untreated olivine[J]. Renew Energy, 2005, 30(4): 565-587.

    7. [7]

      [7] CHRISTODOULOU C, GRIMEKIS D, PANOPOULOS K D, PACHATOURIDOU E P, ILIOPOULOU E F, KAKARAS E. Comparing calcined and un-treated olivine as bed materials for tar reduction in fluidized bed gasification[J]. Fuel Process Technol, 2014, 124: 275-285.

    8. [8]

      [8] VIRGINIE M, COURSON C, NIZNANSKY D, CHAOUI N, KIENNEMANN A. Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification[J]. Appl Catal B: Environ, 2010, 101(1/2): 90-100.

    9. [9]

      [9] RAPAGNÀ S, VIRGINIE M, GALLUCCI K, COURSON C, MARCELLO M D, KIENNEMANN A, FOSCOLO P U. Fe/olivine catalyst for biomass steam gasification: Preparation, characterization and testing at real process conditions[J]. Catal Today, 2011, 176(1): 163-168.

    10. [10]

      [10] MICHEL R, ŁAMACZ A, KRZTON A, MARIADASSOU G D, BURG P, COURSON C, GRUBE R. Steam reforming of α-methylnaphthalene as a model tar compound over olivine and olivine supported nickel[J]. Fuel, 2013, 109: 653-660.

    11. [11]

      [11] 杨小芹, 徐绍平, 胡冠, 刘长厚. 不同矿源橄榄石对催化苯水蒸气重整的影响[J]. 催化学报, 2009, 30(6): 497-502. (YANG Xiao-qin, XU Shao-ping, HU Guan, LIU Chang-hou. Effects of olivines from different quarries on the steam reforming of benzene[J]. Chin J Catal, 2009, 30(6): 497-502.)

    12. [12]

      [12] 魏立纲, 徐绍平, 刘长厚, 刘淑芹. 预煅烧对橄榄石生物质气化催化性能的影响[J]. 燃料化学学报, 2008, 36(4): 426-430. (WEI Li-gang, XU Shao-ping, LIU Chang-hou, LIU Shu-qin. Effects of precalcination on catalytic activity of olivine in biomass gasification[J]. J Fuel Chem Technol, 2008, 36(4): 426-430.)

    13. [13]

      [13] KUHN J N, ZHAO Z K, Larry G, FELIX L G, SLIMANE R B, CHOI C W, OZKAN U S. Olivine catalysts for methane- and tar-steam reforming[J]. Appl Catal B: Environ, 2008, 81(1/2): 14-26.

    14. [14]

      [14] CHEN T H, LIU H B, SHI P C, CHEN D, SONG L, HE H P, FROST R L. CO2 reforming of toluene as model compound of biomass tar on Ni/palygorskite[J]. Fuel, 2013, 107: 699-705.

    15. [15]

      [15] VIRGINIE M, COURSON C, KIENNEMANN A. Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst[J]. C R Chim, 2010, 13(10): 1319-1325.

    16. [16]

      [16] ŜWIERCZYÑSKI D, LIBS S, COURSON C, KIENNEMANN A. Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound[J]. Appl Catal B: Environ, 2007, 74(3/4): 211-222.

    17. [17]

      [17] NITSCH X, COMMANDRÉ J M, CLAVEL P, MARTIN E, VALETTE J, VOLLE G. Conversion of phenol-based tars over olivine and sand in a biomass gasification atmosphere[J]. Energy Fuels, 2013, 27(9): 5459-5465.

    18. [18]

      [18] SWIERCZYNSKI D, COURSON C, KIENNEMANN A. Study of steam reforming of toluene used as model compound of tar produced by biomass gasification[J]. Chem Eng Process, 2008, 47(3): 508-513.

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    19. [19]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(1)
  • Abstract views(420)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return