Citation: ZHOU Lu-lu, ZHANG Jun, XU Jun-chao, YU Yan, MENG Qiang, YANG Lin-jun, YUAN Zhu-lin. Growth of fine particulates of typical coal ash components in supersaturated water environment[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(6): 754-760. shu

Growth of fine particulates of typical coal ash components in supersaturated water environment

  • Corresponding author: ZHANG Jun, 
  • Received Date: 15 December 2014
    Available Online: 23 February 2015

    Fund Project: 国家重点基础研究发展规划(973计划,2013CB228504) (973计划,2013CB228504)2015年度能源高效清洁利用湖南省高校重点实验室开放基金资助(2015NGQ003)。 (2015NGQ003)

  • By using the droplet size meter, the growth of fine particulates of typical coal ash components, including quartz, ferric oxide, calcium sulphate and mullite, was investigated in supersaturated water environment. The supersaturated water vapor environment was built through the contact of hot water with cold air. The results show that the fine particulates with good wettability grow easily; the smaller the initial particle, the fast it grows. The temperature of hot water has a great influence on the growth of particulates; higher temperature is favorable to form larger particulates. Overall, the diameter of particulates with different physical and chemical properties can be increased to 1 to 6.6 times larger at low supersaturation.
  • 加载中
    1. [1]

      [1] SENIOR C L, HELBLE J J, SAROFIM A F. Emissions of mercury, trace elements and fine particles from stationary combustion sources[J]. Fuel Process Technol, 2000, 65(6): 263-288.

    2. [2]

      [2] 隋建才, 徐明厚, 丘纪华, 韩军. 煤燃烧中可吸入颗粒物的形成及其控制研究现状[J]. 热力发电, 2004, 12(3): 9-12. (SUI Jian-xue, XU Ming-hou, QIU Ji-hua, HAN Jun. Status quo of study on formation of particulate matters absorbable into coal fired utility boilers and control thereof[J]. Therm Power Gener, 2004, 12(3): 9-12.)

    3. [3]

      [3] 王鹏. 燃煤电厂可吸入颗粒物排放及控制研究[D]. 杭州: 浙江大学, 2008. (WANG Peng. Study on PM2.5 emission and control in coal combustion boiler of power plants[D]. Hangzhou: Zhejiang University, 2008.)

    4. [4]

      [4] 凡凤仙, 袁竹林. 外加声场对增加PM2.5碰撞几率的数值模拟研究[J]. 中国电机工程学报, 2006, 26(11): 12-16. (FAN Feng-xian, YUAN Zhu-lin. Numerical simulation of the conllision rate of PM2.5 in sound wave field[J]. Proc CSEE, 2006, 26(11): 12-16.)

    5. [5]

      [5] WATANABE T, TOCHIKUBO F, KOIZMMI Y, TSUCHIDA T, HAUTANEN J, KAUPPINEN E. Submicron particle agglomeration by electrostatic agglomerator[J]. J Electrostatics, 1995, 34(4): 367-383.

    6. [6]

      [6] LI Y W, ZHAO C S, WU X, LU D F. Aggregation experiments on fine fly ash particles in gtadient magnetic field[J]. Chem Eng Technol, 2007, 30(8): 1-6.

    7. [7]

      [7] LIND T, KANPPINEN E I, SRINIVASACHAR K, PORLE K, GURAV A S, KODAS T T. Submicron agglomerate particle formation inlaboratory and full-scale pulverized coal combustion[J]. J Aerosol Sci, 1996, 127(8): 361-362.

    8. [8]

      [8] 杨林军, 颜金培, 沈湘林. 蒸汽相变促进燃烧源PM2.5凝并长大的研究现状与展望[J]. 现代化工, 2005, 25(11): 22-26. (YANG Lin-jun, YAN Jin-pei, SHEN Xiang-lin.Prospect and advances in growth of PM2.5 from combustion by vapor condensation[J]. Mod Chem Ind, 2005, 25(11): 22-26.)

    9. [9]

      [9] 鲍静静, 杨林军, 颜金培, 黄永刚, 蒋振华, 沈湘林. 应用蒸汽相变协同脱除细颗粒和湿法脱硫的实验研究[J]. 中国电机学报, 2009, 29(2): 13-19. (BAO Jing-jing, YANG Lin-jun, YAN Jin-pei, HUANG Yong-gang, JIANG zhen-hua, SHEN xiang-lin. Experimental study on combined wet flue gas desulfurization and removal of fine particles by heterogeneous condensation enlargement[J]. Proc CSEE, 2009, 29(2): 13-19.)

    10. [10]

      [10] YOSHIDA T, KOUSAKA Y, OKUYAMA K. Growth of aerosol particles by condensation[J]. lnd Eng Chem, 1976, (1): 37-41.

    11. [11]

      [11] PORSTENDÖRFER J, SCHEIBEL H G, POHL F G, REISCHI G, WAGNER P E. Heterogeneous nucleation of water vapor on mono dispersed Ag and NaCl particles with diameters between 6 and 18 nm[J]. Aerosol Sci Technol, 1985, 4(1): 65-79.

    12. [12]

      [12] HEIDENREICH S, EBERT F. Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases[J]. Chem Eng Process, 1995, 34(3): 235-244.

    13. [13]

      [13] TAMMARO M, DI NATALE F, SALLUZZO A, LANCIA A. Heterogeneous condensation of submicron particles in a growth tube[J]. Chem Eng Sci, 2012, 74: 124-134.

    14. [14]

      [14] 颜金培, 杨林军, 沈湘林. 燃烧源PM2.5微粒润湿性能[J]. 东南大学学报(自然科学版), 2006, 36(5): 760-764. (YAN Jin-pei, YANG Lin-jun, SHEN Xiang-lin. Wettability of PM2.5 from combustion[J]. J Southeast Univ(Nat Sci Ed), 2006, 36(5): 760-764.)

    15. [15]

      [15] 鲍静静, 杨林军, 颜金培. 应用蒸汽相变协同脱除细颗粒和湿法脱硫的实验研究[J]. 中国电机工程学报, 2009, 29(2): 13-19. (BAO Jing-jing, YANG Lin-jun, YAN Jin-pei. Experimental study on combined wet flue gas desulfurization and removal of fine particles by heterogeneous condensation enlargement[J]. Proc CSEE, 2009, 29(2): 13-19.)

    16. [16]

      [16] 陆斌, 杨林军, 辛成运. 蒸汽相变促进湿法脱硫净烟气中细颗粒物的脱除[J]. 东南大学学报(自然科学版), 2011, 41(1): 118-123. (LU Bin, YANG Lin-jun, XIN Cheng-yun. Improving removal of fine particles from wet-process desulfurized flue gas by heterogeneous condensation[J]. J Southeast Univ(Nat Sci Ed), 2011, 41(1): 118-123.)

    17. [17]

      [17] 颜金培, 杨林军, 张霞. 应用蒸汽相变机理脱除燃煤可吸入颗粒物实验研究[J]. 中国电机工程学报, 2007, 27(35): 12-16. (YAN Jin-pei, YANG Lin-jun, ZHANG Xia. Experimental study on separation of inhalable particles from coal combustion by Heterogeneous condensation enlargement[J]. Proc CSEE, 2007, 27(35): 12-16.)

    18. [18]

      [18] PERRY R H, GREEN D W. Perry’s chemical engineering handbook[M]. Beijing: Science Press, 2001.

    19. [19]

      [19] 郭欣, 郑楚光, 孙涛. 电厂煤飞灰颗粒物的物理化学特征[J]. 燃烧科学与技术, 2005, 11(2): 192-195. (GUO Xin, ZHENG Chu-guang, SUN Tao. Physicochemical characteristics of fly ash from coal-fired power station[J]. J Combust Sci Technol, 2005, 11(2): 192-195.)

    20. [20]

      [20] HERING S V, STOLZENBURG M R. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow[J]. Aerosol Sci Technol, 2005, 39(5): 428-435.

    21. [21]

      [21] 徐俊超. 细颗粒物核化凝结长大实验平台设计及特性研究[D]. 南京: 东南大学, 2014. (XU Jun-chao. Fine particle growth by nucleation and condensation experiment system and characteristic research[D]. Nangjing: Southest University, 2014.)

    22. [22]

      [22] HERING S V, STOLZENBURG M R. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow[J]. Aerosol Sci Technol, 2005, 39(5): 428-436.

    23. [23]

      [23] FLETCHER. Size effect in heterogeneous nucleation[J]. J Chem phys, 1958, 29(3): 572-576.

    24. [24]

      [24] KULMALA M. Condensational growth and evaporation in the transition regime[J]. Aerosol Sci Technol, 1993, 19(3): 381-388.

    25. [25]

      [25] AKYUREK B O, LARSON D, WANG G C. Cloud droplet growth: SIO217A[P]. 2013-12-06

  • 加载中
    1. [1]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    2. [2]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    3. [3]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    12. [12]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    13. [13]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    14. [14]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    15. [15]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

Metrics
  • PDF Downloads(0)
  • Abstract views(395)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return