Citation:
JI Xiang-fei, ZHAO Jiao-jiao, AN Zhuan-zhuan, ZHAI Zheng-hao, ZHANG Zhi-yong, LI Jing. Synthesis of ZSM-5 zeolites with different morphology and their catalytic performance in methanol to propylene reactions[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(6): 747-753.
-
Using cheap raw materials, ZSM-5 zeolites with different morphology were hydrothermally synthesized by adding urea and adjusting alkalinity in initial solutions. The effects of zeolite morphology on the catalytic performance in methanol to propylene reactions were studied. The results show that the contents of urea and alkalinity have a great effect on the crystal morphology and growth directions. Specifically, ZSM-5 crystal shows the slowest growth rate along b-axis direction and the crystals of product appear as flakes of about 130 nm in thickness when urea/SiO2(mol ratio)=0.28 and Na2O/SiO2(mol ratio)=0.035. As the content of alkalinity increases within a certain range, the products gradually convert to the congeries of nano-size particles. The characterizations of ICP, NH3-TPD, and N2-adsorption show that the SiO2/Al2O3 mol ratios, acidity, and pore structures for all the products are much near to each other. The products of flake shape show many advantages in catalytic reactions: good selectivity in methanol to propylene conversions, high over 60% of olefin (ethylene + propylene), about 8.4 of propylene/ethylene ratio, and superior catalytic stability, being over 95% of methanol conversion for 200 h continuous reaction. The excellent performance may be attributed to the short diffusion path length along b-axis direction and high crystallinity.
-
Keywords:
- ZSM-5,
- synthesis,
- morphology,
- MTP,
- catalytic performance
-
-
-
[1]
[1] OLSON D H, KOKOTAILO G T, LAWTON S L, MELER W M. Crystal structure and structure-related properties of ZSM-5[J]. J Phys Chem, 1981, 85(15): 2238-2243.
-
[2]
[2] REDDY J K, MOTOKURA K, KOYAMA T, MIYAJI A, BABA T. Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking[J]. J Catal, 2012, 289: 53-61
-
[3]
[3] MIRTH G, ĈEJKA J, LERCHER J A.Transport and isomerization of xylenes over HZSM-5 zeolites[J]. J Catal, 1993, 139(1): 24-33.
-
[4]
[4] APELIAN M R, FLETCHER D L, SARLI M S, SHIH S S. Hydrocarbon upgrading process: US, 5308471A[P]. 1994-03-03.
-
[5]
[5] LE T S, LE V M R. Preparation of fluorinated-desilicated ZSM-5 zeolites with high surface acidity properties[J]. Microporous Mesoporous Mater, 2000, 34(1): 93-97.
-
[6]
[6] MOKRANI T, SCURRELL M. Gas conversion to liquid fuels and chemicals: The methanol route-catalysis and processes development[J]. Catal Rev, 2009, 51(1): 1-145.
-
[7]
[7] KUMAR R, RATNASAMY P. Isomerization and formation of xylenes over ZSM-22 and ZSM-23 zeolites[J]. J Catal, 1989, 116(2): 440-448.
-
[8]
[8] BRISCOE N A, JOHNSON D W, SHANNON M D, KOKOTAILO G T, MCCUSKER L B. The framework topology of zeolite EU-1[J]. Zeolites, 1988, 8(1): 74-76.
-
[9]
[9] BOXI T, PUCHE M, CAMBLOR M A, CORMA A. Synthetic porous crystalline material ITQ-13, its synthesis and use: US, 6471941B1[P]. 2002-10-29.
-
[10]
[10] FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun, 2009, 10(12): 1582-1585.
-
[11]
[11] 温鹏宇, 梅长松, 刘红星, 杨为民, 陈庆玲. 甲醇分压和ZSM-5晶粒大小对甲醇制丙烯的影响[J]. 化学反应工程与工艺, 2007, 23(6): 481-486. (WEN Peng-yu, MEI Chang-song, LIU Hong-xing, YANG Wei-min, CHEN Qing-ling. Influence of methanol partial pressure and ZSM-5 particle size on distribution of products for methanol conversion to propylene[J]. Chem React Eng Technol, 2007, 23(6): 481-486.)
-
[12]
[12] MÖLLER K P, BÖHRINGER W, SCHNITZLER A E, STEEN E V, O’CONNOR C T. The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methanol over HZSM-5[J]. Microporous Mesoporous Mater, 1999, 29(1/2): 127-144.
-
[13]
[13] CHOI M, NA K, KIM J, SAKAMOTO Y, TERASAKI O, RYOO R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009, 461: 246-249.
-
[14]
[14] 刘艳. 若干重要的工业沸石分子筛晶体形貌调控[D]. 浙江: 浙江大学, 2014. (LIU Yan. The morphology control of several important industrial zeolite crystals and their catalytic properties[D]. Zhejiang: Zhejiang University, 2014.)
-
[15]
[15] CHAO K J, TASI T C, CHEN M S. Kinetic studies on the formation of zeolite ZSM-5[J]. J Chem Soc, Faraday Trans 1, 1981, 77: 547-551.
-
[16]
[16] PATCAS F C. The methanol-to-olefins conversion over zeolite-coated ceramic foams[J]. J Catal, 2005, 231: 194-200.
-
[17]
[17] SHAN Z C, WANG H, MENG X J, LIU S Y, WANG L, WANG C Y, LI F, LEWIS J P, XIAO F S. Designed synthesis of TS-1 crystals with controllable b-oriented length[J]. Chem Commun, 2011, 47(3): 1048-1050.
-
[18]
[18] NA J D, LIU G Z, ZHOU T Y, DING G C, HU S L, WANG L. Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization[J]. Catal Lett, 2013, 143(3): 267-275.
-
[19]
[19] 张卿, 张兰兰, 胡思, 雍晓静, 阿古达木, 巩雁军, 窦涛. 不同铝源合成ZSM-5分子筛及其MTP催化性能[J]. 石油学报(石油加工), 2012, 28: 39-42. (ZHANG Qing, ZHANG Lan-lan, HU Si, YONG Xiao-jing, AGUDAMU, GONG Yan-jun, DOU Tao. Effect of aluminum sources on the synthesis of ZSM-5 and their catalytic properties for MTP reaction[J]. Acta Pet Sin(Pet Process Sect), 2012, 28: 39-42.)
-
[20]
[20] CARO J, NOACK M, RICHTER-MENDAU J, MARLOW F, PETERSOHN D, GRIEPENTROG M, KORNATOWSKI J. Selective sorption uptake kinetics of n-hexane on ZSM-5-A new method for measuring anisotropic diffusivities[J].J Phys Chem, 1993, 97(51): 13685-13690.
-
[21]
[21] GUEUDRÉ L, CHMELIK C, KÄRGER J. Diffusion anisotropy in a single crystal of silicalite-1 studied by interference microscopy[J]. Diffusion-fundamentals.org, 2011, 16(45): 1, 2.
-
[22]
[22] TEKETEL S, SKISTAD W, BENARD S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Shape selectivity in the conversion of methanol to hydrocarbons: the catalytic performance of one-dimensional 10-ring zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1[J]. ACS Catal, 2012, 2(1): 26-37.
-
[23]
[23] BLEKEN F L, JANSSENS TON V W, SVELLE S, OLSBYE U. Product yield in methanol conversion over ZSM-5 is predominantly independent of coke content[J]. Microporous Mesoporous Mater, 2012, 164: 190-198.
-
[24]
[24] SVELLE S, VISUR M, OLSBYE U, SAEPURAHMAN, BJØRGEN M. Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: A Review[J]. Top Catal, 2011, 54(13/15): 897-906.
-
[25]
[25] HAW J F, SONG W, MARCUS D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res, 2003, 36(5): 317-326.
-
[26]
[26] SUN X Y, MUELLER S, LIU Y, SHI H, HALLER G L, SANCHEZ-SANCHEZ M, VAN VEEN A C, LERCHER J A. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5[J]. J Catal, 2014, 317: 185-197.
-
[27]
[27] OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS TON V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51: 5810-5831.
-
[28]
[28] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olenic species[J]. J Catal, 2007, 249: 195-207.
-
[29]
[29] BLEKEN B-T L, WRAGG D S, ARSTAD B, GUNNS A E, MOUZON J, HELVEG S, LUNDEGAARD L F, BEATO P, BORDIGA S, OLSBYE U, SVELLE S, LILLERUD K P. Unit cell thick nanosheets of zeolite H-ZSM-5: Structure and activity[J]. Top Catal, 2013, 56(9/10): 558-566.
-
[30]
[30] BJØRGEN M, JOENSEN F, HOLM M S, OLSBYE U, LILLERUD K-P, SVELLE S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH[J]. Appl Catal A: Gen, 2008, 345(1): 43-50.
-
[1]
-
-
-
[1]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[2]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[3]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[4]
Chunling Qin , Shuang Chen , Hassanien Gomaa , Mohamed A. Shenashen , Sherif A. El-Safty , Qian Liu , Cuihua An , Xijun Liu , Qibo Deng , Ning Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059
-
[5]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[6]
Bin SUN , Heyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428
-
[7]
Lifang HE , Wenjie TANG , Yaoze LUO , Mingsheng LIANG , Jianxin TANG , Yuxuan WU , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012
-
[8]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[9]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[10]
Lei Feng , Ze-Min Zhu , Ying Yang , Zongbin He , Jiafeng Zou , Man-Bo Li , Yan Zhao , Zhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029
-
[11]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[12]
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
-
[13]
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
-
[14]
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
-
[15]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[16]
Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065
-
[17]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[18]
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
-
[19]
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
-
[20]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(890)
- HTML views(64)