Citation: JIA Teng-fei, WANG Liang, LI Chun-hu, YAN Xin, YANG Wei-wei, FENG Li-juan. Hydrothermal synthesis of Bi2WO6/SC catalyst and its photo-catalytic performance in NO removal[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(6): 735-739. shu

Hydrothermal synthesis of Bi2WO6/SC catalyst and its photo-catalytic performance in NO removal

  • Corresponding author: WANG Liang, 
  • Received Date: 24 December 2014
    Available Online: 10 February 2015

    Fund Project: 青岛市科技发展计划(13-1-4-191-jch) (13-1-4-191-jch)山东省博士后创新基金(201203105)。 (201203105)

  • A novel Bi2WO6/SC photo-catalyst was synthesized by hydrothermal method with semi-coke (SC) as the support. The as-prepared catalyst was characterized by SEM, BET, XRD, FT-IR and UV-vis diffuse reflectance spectra; its photo-catalytic activity in NO oxidation under visible light irradiation (λ> 400 nm) was evaluated. The results indicate that Bi2WO6 obtained by hydrothermal method displays micro-flower structure and absorption spectrum toward the visible light region above 400 nm. The Bi2WO6/SC catalyst exhibits excellent photo-catalytic activity in NO removal; NO conversion remains higher than 70% after reaction under irradiation for 4 h.
  • 加载中
    1. [1]

      [1] 张丽莎, 王焕丽, 李世杰, 柳建设. Bi2WO6基纳米光催化剂的研究进展[J]. 现代化工, 2012, 32(9): 36-39. (ZHANG Li-sha, WANG Huan-li, LI Shi-jie, LIU Jian-she. Research progress in Bi2WO6 based nano-photocatalysts[J]. Mod Chem Ind, 2012, 32(9): 36-39.)

    2. [2]

      [2] XIONG J, CHENG G, LU Z, TANG J, YU X, CHEN R. BiOCOOH hierarchical nanostructures: Shape-controlled solvothermal synthesis and photocatalytic degradation performances[J]. Cryst Eng Comm, 2011, 13: 2381-2390.

    3. [3]

      [3] ZHUO Y, HUANG J, CAO L, OU YANG H, WU J. Photocatalytic activity of snow-like Bi2WO6 microcrystalline fordecomposition of Rhodamine B under natural sunlight irradiation[J]. Mater Lett, 2013, 90: 107-110.

    4. [4]

      [4] XU J, AO Y, CHEN M. A simple method for the preparation of Bi2WO6-reduced graphene oxide with enhanced photocatalytic activity under visible light irradiation[J]. Mater Lett, 2013, 92: 126-128.

    5. [5]

      [5] TANG J W, ZOU Z G, YE J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible lisht irradiation[J]. Catal Lett, 2004, 92(1/2): 53-56.

    6. [6]

      [6] ZHANG L, WANG W, CHEN Z, ZHOU L, XU H, ZHU W. Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts[J]. Mater Chem, 2007, 17: 2526-2532.

    7. [7]

      [7] YAO S, WEI J, HUANG B, FENG S, ZHANG X, QIN X, WANG P, WANG Z, ZHANG Q, JING X, ZHAN J. Morphology modulated growth of bismuth tungsten oxide nanocrystals[J]. Solid State Chem, 2009, 182(2): 236-239.

    8. [8]

      [8] ZHANG Z, WANG W, SHANG M, YIN W. Low-temperature combustion synthesis of Bi2WO6 nano-particles as a visible-light-driven photocatalyst[J]. J Hazard Mater, 2010, 777(1/3): 1013-1018.

    9. [9]

      [9] 刘自力, 韦江慧. 光催化降解糖蜜酒精废水的研究[J]. 工业催化, 2004, 12(2): 31-34. (LIU Zi-li, WEI Jiang-hui. Photocatalytic degradation of wastewater from fermented molasses[J]. Ind Catal, 2004, 12(2): 31-34.)

    10. [10]

      [10] ZHU J, WANG J G, BIAN Z F, GAO F G, LI H X. Solvothermal synthesis of highly active Bi2WO6 visible photocatalyst[J]. Res Chem Intermed, 2009,35(6/7): 799-806.

    11. [11]

      [11] LIU Q Y, LI C H, LI Y X. SO2 removal from flue gas by activated semi-cokes. The preparation of catalysts and determination of operating conditions[J]. Carbon, 2003, 41(12): 2217-2223.

  • 加载中
    1. [1]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    2. [2]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    4. [4]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    9. [9]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    10. [10]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    11. [11]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    18. [18]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(0)
  • Abstract views(446)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return