Citation: LIU Li-hua, LIU Shu-qun, YIN Hai-liang, LIU Yun-qi, LIU Chen-guang. Hydrogen spillover effect between Ni2P and MoS2 catalysts in hydrodesulfurization of dibenzothiophene[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(6): 708-713. shu

Hydrogen spillover effect between Ni2P and MoS2 catalysts in hydrodesulfurization of dibenzothiophene

  • Received Date: 20 March 2015
    Available Online: 4 May 2015

    Fund Project: Supported by the National Natural Science Foundation of China (21206197) (21206197) the Natural Science Foundation of Anhui Province (1408085QB44) (1408085QB44) the Science-Technology Foundation for Fostering Talents of Huaibei City (20140316) (20140316) the Youth Foundation of Huaibei Normal University (2013xqz01) (2013xqz01)and Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2013CL021). (BS2013CL021)

  • The hydrodesulfurization of dibenzothiophene over physically separated Ni2P//MoS2 catalyst beds was investigated.The results indicated that the hydrogen spillover effect appears between the Ni2P/Al2O3 and MoS2/Al2O3 catalysts in the hydrodesulfurization reaction, which can significantly enhance the concentration of active sites and the hydrodesulfurization rate over the MoS2 catalyst. The spillover factor on Ni2P//MoS2is slightly higher than that on NiSx//MoS2, due to the higher hydrogen dissociation activity of Ni2P; as a result, Ni2P is a superior promoter to NiSx for the MoS2 catalyst.
  • 加载中
    1. [1]

      [1] SONG C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003, 86(1/4): 211-263.

    2. [2]

      [2] STANISLAUS A, MARAFI A, RANA M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production[J]. Catal Today, 2010, 153(1/2): 1-68.

    3. [3]

      [3] TOPSØE H, CLAUSEN B S, TOPSØE N Y, ZEUTHEN P. Progress in the design of hydrotreating catalysts based on fundamental molecular insight[J]. Stud Surf Sci Catal, 1989, 53: 77-102.

    4. [4]

      [4] TOPSØE H, CLAUSEN B S. Importance of Co-Mo-S type structures in hydrodesulfuriza-tion[J]. Catal Rev Sci Eng, 1984, 26(3/4): 395-420.

    5. [5]

      [5] KARROUA M, MATRALIS H, GRANGE P, DELMON B. Synergy between "NiMoS" and Co9S8 in the hydrogenation of cyclohexene and hydrodesulfurization of thiophene[J]. J Catal, 1993, 139(2): 371-374.

    6. [6]

      [6] DELMON B. Are solid catalysts successfully emulating enzymes[J]? Chin J Catal, 2010, 26(8): 859-871.

    7. [7]

      [7] TOPSØE H, CLAUSEN B S. Active sites and support effects in hydrodesulfurization catalysts[J]. Appl Catal, 1986, 25(1/2): 273-293.

    8. [8]

      [8] TOPSØE H, HINNEMANN B, NØRSKOV J K, LAURITSEN J V, BESENBACHER F, HANSEN P L, HYTOFT G, EGEBERG R G, KNUDSEN K G. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts[J]. Catal Today, 2005, 107-108: 12-22.

    9. [9]

      [9] LAURITSEN J V, KIBSGAARD J, OLESEN G H, MOSES P G, HINNEMANN B, HELVEG S, NØRSKOV J K, CLAUSEN B S, TOPSØE H, LØGSGAARD E, BESENBACHER F. Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts[J]. J Catal, 2007, 249(2): 220-233.

    10. [10]

      [10] LAURITSEN J V, HELVEG S, LGSGAARD E, STENSGAARD I, CLAUSEN B S, TOPSØE H, BESENBACHER F. Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts[J]. J Catal, 2001, 197(1): 1-5.

    11. [11]

      [11] KIBSGAARD J, LAURITSEN J V, GSGAARD E, CLAUSEN B S, TOPSØE H, BESENBACHER F. Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst[J]. J Am Chem Soc, 2006, 128(42): 13950-13958.

    12. [12]

      [12] ESCALONA N, GARCIA R, LAGOS G, NAVARRETE C, BAEZA P, GIL-LLAMBIAS F J. Effect of the hydrogen spillover on the selectivity of dibenzothiophene hydrodesulfurization over CoSx/γ-Al2O3, NiSx/γ-Al2O3 and MoS2/γ-Al2O3 catalysts[J]. Catal Commun, 2006, 7(12): 1053-1056.

    13. [13]

      [13] BAEZA P, URETA-ZAÑARTU M S, ESCALONA N, OJEDA J, GIL-LLAMBIAS F J, DELMON B. Migration of surface species on supports: A proof of their role on the synergism between CoSx or NiSx and MoS2 in HDS[J]. Appl Catal A: Gen, 2004, 274(1/2): 303-309.

    14. [14]

      [14] OJEDA J, ESCALONA N, BAEZA P, ESCUDEY M, GIL-LLAMBIAS F J. Synergy between Mo/SiO2 and Co/SiO2 beds in HDS: A remote control effect[J]? Chem Commun, 2003, (13): 1608-1609.

    15. [15]

      [15] VILLARROEL M, BAEZA P, ESCALONA N, OJEDA J, DELMON B, GIL-LLAMBIAS F J. MD//Mo and MD//W promotion via spillover hydrogen in hydrodesulfurization[J]. Appl Catal A: Gen, 2008, 345(2): 152-157.

    16. [16]

      [16] BAEZA P, VILLARROEL M, ÁVILA P, LÓPEZ AGUDO A, DELMON B, GIL-LLAMBIAS F J. Spillover hydrogen mobility during Co-Mo catalyzed HDS in industrial-like conditions[J]. Appl Catal A: Gen, 2006, 304: 109-115.

    17. [17]

      [17] VILLARROEL M, M NDEZ A, ÁGUILA G, ESCALONA N, BAEZA P, GIL-LLAMBIAS F. Synergism in alumina-supported noble metals and molybdenum stacked-bed catalysts via spillover hydrogen in gas-oil hydrodesulphurization[J]. Catal Today, 2010, 156(1/2): 65-68.

    18. [18]

      [18] VILLARROEL M, CAMÙ E, ESCALONA N, ÁVILA P, RASMUSSEN S B, BAEZA P, GIL-LLAMBIAS F. Synergisms via hydrogen spillover between some transition metals during hydrodesulphurization: Increased activity towards conversion of refractory molecules[J]. Appl Catal A: Gen, 2011, 399(1/2): 63-68.

    19. [19]

      [19] VALDEVENITO F, GARC A R, ESCALONA N, GIL-LLAMBIAS F J, RASMUSSEN S B, LÓPEZ-AGUDO A. Ni//Mo synergism via hydrogen spillover, in pyridine hydrodenitrogenation[J]. Catal Commun, 2010, 11(14): 1154-1156.

    20. [20]

      [20] LIU L, LIU B, CHAI Y, LIU Y, LIU C. Synergetic effect between sulfurized Mo/γ-Al2O3 and Ni/γ-Al2O3 catalysts in hydrodenitrogenation of quinoline[J]. J Nat Gas Chem, 2011, 20(2): 214-217.

    21. [21]

      [21] RODRIGUEZ J A, KIM J Y, HANSON J C, SAWHILL S J, BUSSELL M E. Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: Time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies[J]. J Phys Chem B, 2003, 107(26): 6276-6285.

    22. [22]

      [22] KIM J H, MA X, SONG C, LEE Y K, OYAMA S T. Kinetics of two pathways for 4,6-dimethyldibenzothiophene hydrodesulfurization over NiMo, CoMo sulfide, and nickel phosphide catalysts[J]. Energy Fuels, 2005, 19(2): 353-364.

    23. [23]

      [23] LU M, WANG A, LI X, DUAN X, TENG Y, WANG Y, SONG C, HU Y. Hydrodenitrogenation of quinoline catalyzed by MCM-41-supported nickel phosphides[J]. Energy Fuels, 2007, 21(2): 554-560.

    24. [24]

      [24] YANG S, LIANG C, PRINS R. A novel approach to synthesizing highly active Ni2P/SiO2 hydrotreating catalysts[J]. J Catal, 2006, 237(1): 118-130.

    25. [25]

      [25] GUAN Q, LI W. The synthesis and evaluation of highly active Ni2P-MoS2 catalysts using the decomposition of hypophosphites[J]. Catal Sci Technol, 2012, 2(11): 2356-2360.

    26. [26]

      [26] LIU L, LI G, LIU B, LIU D, LIU Y, LIU C. Hydrodesulfurization performence study of Ni2P-modiffied MoS2/Al2O3 catalysts[J]. Chem Ind Eng Soc Chin, 2011, 62(5): 1296-1231.

    27. [27]

      [27] MCDONALD J W, FRIESEN G D, ROSENHEIN L D, NEWTON W E. Syntheses and characterization of ammonium and tetraalkylammonium thiomolybdates and thiotungstates[J]. Inorg Chim Acta, 1983, 72: 205-210.

    28. [28]

      [28] PRINS R. Hydrogen spillover. Facts and fiction[J]. Chem Rev, 2012, 112(5): 2714-2738.

    29. [29]

      [29] KHOOBIAR S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles[J]. J Phys Chem, 1964, 68(2): 411-412.

    30. [30]

      [30] ARAI M, FUKUSHIMA M, NISHIYAMA Y. Interrupted-temperature programmed desorption of hydrogen over silica-supported platinum catalysts: The distribution of activation energy of desorption and the phenomena of spillover and reverse spillover of hydrogen[J]. Appl Surf Sci, 1996, 99(2): 145-150.

    31. [31]

      [31] LIU X, CHEN J, ZHANG J. Hydrodechlorination of chlorobenzene over silica-supported nickel phosphide catalysts[J]. Ind Eng Chem Res, 2008, 47(15): 5362-5368.

    32. [32]

      [32] SHI G, SHEN J. New synthesis method for nickel phosphide nanoparticles: Solid phase reaction of nickel cations with hypophosphites[J]. J Mater Chem, 2009, 19: 2295-2297.

    33. [33]

      [33] OYAMA S T, WANG X, LEE Y K, CHUN W J. Active phase of Ni2P/SiO2 in hydroprocessing reactions[J]. J Catal, 2004, 221(2): 263-273.

    34. [34]

      [34] VILLARROEL M, BAEZA P, GRACIA F, ESCALONA N, AVILA P, GIL-LLAMBIAS F J. Phosphorus effect on Co//Mo and Ni//Mo synergism in hydrodesulphurization catalysts[J]. Appl Catal A: Gen, 2009, 364(1/2): 75-79.

    35. [35]

      [35] FAN Y, XIAO H, SHI G, LIU H, QIAN Y, WANG T, GONG G, BAO X. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts[J]. J Catal, 2011, 279(1): 27-35.

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    3. [3]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    4. [4]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    5. [5]

      Xian-Rui Meng Qian Chen Mei-Feng Wu Qiang Wu Su-Qin Wang Li-Ping Jin Fan Zhou Ren-Li Ma Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543

    6. [6]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    7. [7]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    8. [8]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    9. [9]

      Yayun ShiCongcong LiuZhijun ZuoXiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772

    10. [10]

      Zheng ZhangLei ShiBin WangJingyuan QuXiaoling WangTao WangQitao JiangWuhong XueXiaohong Xu . Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chinese Chemical Letters, 2025, 36(3): 109687-. doi: 10.1016/j.cclet.2024.109687

    11. [11]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    12. [12]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    13. [13]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    16. [16]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

Metrics
  • PDF Downloads(0)
  • Abstract views(353)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return