Citation:
LÜ Yan-an, ZHAO Xing-ling, SUO Zhang-huai, LIAO Wei-ping, JIN Ming-shan. Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(6): 684-691.
-
Al2O3, CeO2, TiO2 and MgO supported Ni catalysts were prepared by incipient impregnation. The activities in glycerol steam reforming to hydrogen production were evaluated at 300~500 ℃. The catalysts were characterized by XRD, N2 adsorption, TEM, and H2-TPR techniques. A strong effect of support on the activity of Ni catalyst was detected. Ni/CeO2 catalyst gives the highest activity among all catalysts at 400 ℃and the following activity order is shown Ni/CeO2> Ni/Al2O3 > Ni/TiO2 ~ Ni/MgO. On Ni/CeO2, there was almost no deactivation detected after 20 h reaction with 70% conversion of glycerol and 69.2% H2 yield. Good activity and stability of the catalyst is attributed to the intrinsic property of CeO2 and strong interaction between CeO2 and active nickel species. Relatively high glycerol conversion (85.7%) with low H2 selectivity on Ni/Al2O3 catalyst at 500 ℃ is achieved due to its high surface area and large pore volume. The formation of solid solution NiMgO2 phase observed in Ni/MgO catalyst does not show the desired activity at low temperatures though it enhanced the interactions between active phase and the support. Base oxide supports (CeO2, MgO) seem to be more effective than acid oxide supports in preventing the formation of CO and CH4 as by-products.
-
-
-
[1]
[1] 袁冰, 刘天, 于世涛. 基于杂多类离子液体催化体系的甘油氢解反应研究[J]. 燃料化学学报, 2014, 42(10): 1218-1224. (YUAN Bing, LIU Tian, YU Shi-tao. Hydrogenolysis of glycerol over a catalytic system based on heteropoly ionic liquid[J]. J Fuel Chem Technol, 2014, 42(10): 1218-1224.)
-
[2]
[2] 郝顺利, 彭伟才, 赵宁, 肖福魁, 魏伟, 孙予罕, 李海. 不同载体负载Cu催化剂上甘油氢解制1,2-丙二醇催化性能的研究[J]. 燃料化学学报, 2012, 40(5): 594-600. (HAO Shun-li, PENG Wei-cai, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han, LI Hai. Hydrogenolysis of glycerol to 1,2-propanediol over various supported Cu catalysts[J]. J Fuel Chem Technol, 2012, 40(5): 594-600.)
-
[3]
[3] DOU B, SONG Y, WANG C, CHEN H, XU Y. Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges[J]. Renewable Sustainable Energy Rev, 2014, 30: 950-960
-
[4]
[4] SILVA J M, SORIA M A, MADEIRA LUIS M. Challenges and strategies for optimization of glycerol steam reforming process[J]. Renewable Sustainable Energy Rev, 2015, 42: 1187-1213
-
[5]
[5] 刘琦, 张鹏博, 王星会, 陈崇启,林性贻,郑起,詹瑛瑛. 甘油水蒸气重整制氢催化剂研究进展[J]. 分子催化, 2012, 26(1): 89-97. (LIU Qi, ZHANG Peng-bo, WANG Xing-hui, CHEN Chong-Qi, LIN Xing-yi, ZHENG Qi, ZHAN Ying-ying. Progress on glycerol steam reforming for hydrogen production[J]. J Mol Catal (China), 2012, 26(1): 89-97.)
-
[6]
[6] POMPEO F, SANTORI G F, NICHIO N N. Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts[J]. Catal Today, 2011, 172(1): 183-188.
-
[7]
[7] ZHANG B, TANG X, LI Y, XU Y, SHEN W. Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts[J]. Int J Hydrogen Energy, 2007, 32(13): 2367-2373.
-
[8]
[8] CHIODO V, FRENI S, GALVAGNO A, MONDELLO N, FRUSTERI F. Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen[J]. Appl Catal A: Gen, 2010, 381(1/2): 1-7.
-
[9]
[9] MENEZES A O, RODRIGUES M T, ZIMMARO A, BORGES L E P, FRAGA M A. Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides[J]. Renewable Energy, 2011, 36(2): 595-599.
-
[10]
[10] NICHELE V, SIGNORETTO M, MENEGAZZO F, GALLO A, SANTO V D, CRUCIANI G, CERRATO G. Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts[J]. Appl Catal B: Environ, 2012, 111-112: 225-232.
-
[11]
[11] SÁNCHEZ E A, D'ANGELO M A, COMELLI R A. Hydrogen production from glycerol on Ni/Al2O3 catalyst[J]. Int J Hydrogen Energy, 2010, 35(11): 5902-5907.
-
[12]
[12] CHENG C K, FOO S Y, ADESINA A A. Steam reforming of glycerol over Ni/Al2O3 catalyst[J]. Catal Today, 2011, 178(1): 25-33.
-
[13]
[13] WANG C, DOU B, CHEN H, SONG Y, XU Y, DU X, LUO T, TAN C. Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in a fixed-bed reactor[J]. Chem Eng J, 2013, 220: 133-142.
-
[14]
[14] BUFFONI I N, POMPEO F, SANTORI G F, NICHIO N N. Nickel catalysts applied in steam reforming of glycerol for hydrogen production[J]. Catal Commun, 2009, 10(13): 1656-1660.
-
[15]
[15] IRIONDO A, BARRIO V L, CAMBRA J F, ARIAS P L, GUEMEZ M B, SANCHEZ-SANCHEZ M C, NAVARRO R M, FIERRO J L G. Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina[J]. Int J Hydrogen Energy, 2010, 35(20): 11622-11633.
-
[16]
[16] ADHIKARI S, FERNANDO S D, HARYANTO A. Hydrogen production from glycerin by steam reforming over nickel catalysts[J]. Renew Energy, 2008, 33(5): 1097-1100.
-
[17]
[17] SHAO S, SHI A W, LIU C L, YANG R Z, DONG W S. Hydrogen production from steam reforming of glycerol over Ni/CeZrO catalysts[J]. Fuel Proc Technol, 2014, 125: 1-7.
-
[18]
[18] DAVE C D, PANT K K. Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst[J]. Renewable Energy, 2011, 36(11): 3195-3202.
-
[19]
[19] CHEN H, DING Y, CONG N T, DOU B, DUPONT V, GHADIRI M, WILLIAMS P T. A comparative study on hydrogen production from steam-glycerol reforming: Thermodynamics and experimental[J]. Renewable Energy, 2011, 36(2): 779-788.
-
[20]
[20] ADHIKARI S, FERNANDO S, GWALTNEY S R, TO S D F, BRICKA R M, STEELE P H, HARYANTO A. A thermodynamic analysis of hydrogen production by steam reforming of glycerol[J]. Int J Hydrogen Energy, 2007, 32(14): 2875-2880.
-
[21]
[21] CAMPBELL C T, PEDEN C H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714.
-
[22]
[22] POMPEOF, SANTORIG, NICHION N. Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts[J]. Int J Hydrogen Energy, 2010, 35(17): 8912-8920.
-
[23]
[23] IRIONDO A, BARRIO V L, CAMBRA J F, ARIAS P L, GÜEMEZ M B, NAVARRO R M, SÁNCHEZ-SÁNCHEZ M C, FIERRO J L G. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La[J]. Top Catal, 2008, 49(1/2): 46-58.
-
[1]
-
-
-
[1]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[2]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[3]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
-
[4]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[5]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[6]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[7]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[8]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[9]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
-
[10]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[11]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[12]
Yongmei Liu , Lisen Sun , Yongmei Hao , Zhanxiang Liu , Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144
-
[13]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[14]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[15]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[16]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[17]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[18]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[19]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[20]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(499)
- HTML views(67)