Citation: LÜ Yan-an, ZHAO Xing-ling, SUO Zhang-huai, LIAO Wei-ping, JIN Ming-shan. Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(6): 684-691. shu

Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts

  • Corresponding author: SUO Zhang-huai, 
  • Received Date: 19 December 2014
    Available Online: 21 March 2015

    Fund Project: 国家自然科学基金(21273193) (21273193)山东省自然科学基金(ZR2011BM024)。 (ZR2011BM024)

  • Al2O3, CeO2, TiO2 and MgO supported Ni catalysts were prepared by incipient impregnation. The activities in glycerol steam reforming to hydrogen production were evaluated at 300~500 ℃. The catalysts were characterized by XRD, N2 adsorption, TEM, and H2-TPR techniques. A strong effect of support on the activity of Ni catalyst was detected. Ni/CeO2 catalyst gives the highest activity among all catalysts at 400 ℃and the following activity order is shown Ni/CeO2> Ni/Al2O3 > Ni/TiO2 ~ Ni/MgO. On Ni/CeO2, there was almost no deactivation detected after 20 h reaction with 70% conversion of glycerol and 69.2% H2 yield. Good activity and stability of the catalyst is attributed to the intrinsic property of CeO2 and strong interaction between CeO2 and active nickel species. Relatively high glycerol conversion (85.7%) with low H2 selectivity on Ni/Al2O3 catalyst at 500 ℃ is achieved due to its high surface area and large pore volume. The formation of solid solution NiMgO2 phase observed in Ni/MgO catalyst does not show the desired activity at low temperatures though it enhanced the interactions between active phase and the support. Base oxide supports (CeO2, MgO) seem to be more effective than acid oxide supports in preventing the formation of CO and CH4 as by-products.
  • 加载中
    1. [1]

      [1] 袁冰, 刘天, 于世涛. 基于杂多类离子液体催化体系的甘油氢解反应研究[J]. 燃料化学学报, 2014, 42(10): 1218-1224. (YUAN Bing, LIU Tian, YU Shi-tao. Hydrogenolysis of glycerol over a catalytic system based on heteropoly ionic liquid[J]. J Fuel Chem Technol, 2014, 42(10): 1218-1224.)

    2. [2]

      [2] 郝顺利, 彭伟才, 赵宁, 肖福魁, 魏伟, 孙予罕, 李海. 不同载体负载Cu催化剂上甘油氢解制1,2-丙二醇催化性能的研究[J]. 燃料化学学报, 2012, 40(5): 594-600. (HAO Shun-li, PENG Wei-cai, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han, LI Hai. Hydrogenolysis of glycerol to 1,2-propanediol over various supported Cu catalysts[J]. J Fuel Chem Technol, 2012, 40(5): 594-600.)

    3. [3]

      [3] DOU B, SONG Y, WANG C, CHEN H, XU Y. Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges[J]. Renewable Sustainable Energy Rev, 2014, 30: 950-960

    4. [4]

      [4] SILVA J M, SORIA M A, MADEIRA LUIS M. Challenges and strategies for optimization of glycerol steam reforming process[J]. Renewable Sustainable Energy Rev, 2015, 42: 1187-1213

    5. [5]

      [5] 刘琦, 张鹏博, 王星会, 陈崇启,林性贻,郑起,詹瑛瑛. 甘油水蒸气重整制氢催化剂研究进展[J]. 分子催化, 2012, 26(1): 89-97. (LIU Qi, ZHANG Peng-bo, WANG Xing-hui, CHEN Chong-Qi, LIN Xing-yi, ZHENG Qi, ZHAN Ying-ying. Progress on glycerol steam reforming for hydrogen production[J]. J Mol Catal (China), 2012, 26(1): 89-97.)

    6. [6]

      [6] POMPEO F, SANTORI G F, NICHIO N N. Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts[J]. Catal Today, 2011, 172(1): 183-188.

    7. [7]

      [7] ZHANG B, TANG X, LI Y, XU Y, SHEN W. Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts[J]. Int J Hydrogen Energy, 2007, 32(13): 2367-2373.

    8. [8]

      [8] CHIODO V, FRENI S, GALVAGNO A, MONDELLO N, FRUSTERI F. Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen[J]. Appl Catal A: Gen, 2010, 381(1/2): 1-7.

    9. [9]

      [9] MENEZES A O, RODRIGUES M T, ZIMMARO A, BORGES L E P, FRAGA M A. Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides[J]. Renewable Energy, 2011, 36(2): 595-599.

    10. [10]

      [10] NICHELE V, SIGNORETTO M, MENEGAZZO F, GALLO A, SANTO V D, CRUCIANI G, CERRATO G. Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts[J]. Appl Catal B: Environ, 2012, 111-112: 225-232.

    11. [11]

      [11] SÁNCHEZ E A, D'ANGELO M A, COMELLI R A. Hydrogen production from glycerol on Ni/Al2O3 catalyst[J]. Int J Hydrogen Energy, 2010, 35(11): 5902-5907.

    12. [12]

      [12] CHENG C K, FOO S Y, ADESINA A A. Steam reforming of glycerol over Ni/Al2O3 catalyst[J]. Catal Today, 2011, 178(1): 25-33.

    13. [13]

      [13] WANG C, DOU B, CHEN H, SONG Y, XU Y, DU X, LUO T, TAN C. Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in a fixed-bed reactor[J]. Chem Eng J, 2013, 220: 133-142.

    14. [14]

      [14] BUFFONI I N, POMPEO F, SANTORI G F, NICHIO N N. Nickel catalysts applied in steam reforming of glycerol for hydrogen production[J]. Catal Commun, 2009, 10(13): 1656-1660.

    15. [15]

      [15] IRIONDO A, BARRIO V L, CAMBRA J F, ARIAS P L, GUEMEZ M B, SANCHEZ-SANCHEZ M C, NAVARRO R M, FIERRO J L G. Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina[J]. Int J Hydrogen Energy, 2010, 35(20): 11622-11633.

    16. [16]

      [16] ADHIKARI S, FERNANDO S D, HARYANTO A. Hydrogen production from glycerin by steam reforming over nickel catalysts[J]. Renew Energy, 2008, 33(5): 1097-1100.

    17. [17]

      [17] SHAO S, SHI A W, LIU C L, YANG R Z, DONG W S. Hydrogen production from steam reforming of glycerol over Ni/CeZrO catalysts[J]. Fuel Proc Technol, 2014, 125: 1-7.

    18. [18]

      [18] DAVE C D, PANT K K. Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst[J]. Renewable Energy, 2011, 36(11): 3195-3202.

    19. [19]

      [19] CHEN H, DING Y, CONG N T, DOU B, DUPONT V, GHADIRI M, WILLIAMS P T. A comparative study on hydrogen production from steam-glycerol reforming: Thermodynamics and experimental[J]. Renewable Energy, 2011, 36(2): 779-788.

    20. [20]

      [20] ADHIKARI S, FERNANDO S, GWALTNEY S R, TO S D F, BRICKA R M, STEELE P H, HARYANTO A. A thermodynamic analysis of hydrogen production by steam reforming of glycerol[J]. Int J Hydrogen Energy, 2007, 32(14): 2875-2880.

    21. [21]

      [21] CAMPBELL C T, PEDEN C H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714.

    22. [22]

      [22] POMPEOF, SANTORIG, NICHION N. Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts[J]. Int J Hydrogen Energy, 2010, 35(17): 8912-8920.

    23. [23]

      [23] IRIONDO A, BARRIO V L, CAMBRA J F, ARIAS P L, GÜEMEZ M B, NAVARRO R M, SÁNCHEZ-SÁNCHEZ M C, FIERRO J L G. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La[J]. Top Catal, 2008, 49(1/2): 46-58.

  • 加载中
    1. [1]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    2. [2]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    8. [8]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    9. [9]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(0)
  • Abstract views(470)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return