Citation: LÜ Yan-an, ZHAO Xing-ling, SUO Zhang-huai, LIAO Wei-ping, JIN Ming-shan. Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(6): 684-691. shu

Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts

  • Corresponding author: SUO Zhang-huai, 
  • Received Date: 19 December 2014
    Available Online: 21 March 2015

    Fund Project: 国家自然科学基金(21273193) (21273193)山东省自然科学基金(ZR2011BM024)。 (ZR2011BM024)

  • Al2O3, CeO2, TiO2 and MgO supported Ni catalysts were prepared by incipient impregnation. The activities in glycerol steam reforming to hydrogen production were evaluated at 300~500 ℃. The catalysts were characterized by XRD, N2 adsorption, TEM, and H2-TPR techniques. A strong effect of support on the activity of Ni catalyst was detected. Ni/CeO2 catalyst gives the highest activity among all catalysts at 400 ℃and the following activity order is shown Ni/CeO2> Ni/Al2O3 > Ni/TiO2 ~ Ni/MgO. On Ni/CeO2, there was almost no deactivation detected after 20 h reaction with 70% conversion of glycerol and 69.2% H2 yield. Good activity and stability of the catalyst is attributed to the intrinsic property of CeO2 and strong interaction between CeO2 and active nickel species. Relatively high glycerol conversion (85.7%) with low H2 selectivity on Ni/Al2O3 catalyst at 500 ℃ is achieved due to its high surface area and large pore volume. The formation of solid solution NiMgO2 phase observed in Ni/MgO catalyst does not show the desired activity at low temperatures though it enhanced the interactions between active phase and the support. Base oxide supports (CeO2, MgO) seem to be more effective than acid oxide supports in preventing the formation of CO and CH4 as by-products.
  • 加载中
    1. [1]

      [1] 袁冰, 刘天, 于世涛. 基于杂多类离子液体催化体系的甘油氢解反应研究[J]. 燃料化学学报, 2014, 42(10): 1218-1224. (YUAN Bing, LIU Tian, YU Shi-tao. Hydrogenolysis of glycerol over a catalytic system based on heteropoly ionic liquid[J]. J Fuel Chem Technol, 2014, 42(10): 1218-1224.)

    2. [2]

      [2] 郝顺利, 彭伟才, 赵宁, 肖福魁, 魏伟, 孙予罕, 李海. 不同载体负载Cu催化剂上甘油氢解制1,2-丙二醇催化性能的研究[J]. 燃料化学学报, 2012, 40(5): 594-600. (HAO Shun-li, PENG Wei-cai, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han, LI Hai. Hydrogenolysis of glycerol to 1,2-propanediol over various supported Cu catalysts[J]. J Fuel Chem Technol, 2012, 40(5): 594-600.)

    3. [3]

      [3] DOU B, SONG Y, WANG C, CHEN H, XU Y. Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges[J]. Renewable Sustainable Energy Rev, 2014, 30: 950-960

    4. [4]

      [4] SILVA J M, SORIA M A, MADEIRA LUIS M. Challenges and strategies for optimization of glycerol steam reforming process[J]. Renewable Sustainable Energy Rev, 2015, 42: 1187-1213

    5. [5]

      [5] 刘琦, 张鹏博, 王星会, 陈崇启,林性贻,郑起,詹瑛瑛. 甘油水蒸气重整制氢催化剂研究进展[J]. 分子催化, 2012, 26(1): 89-97. (LIU Qi, ZHANG Peng-bo, WANG Xing-hui, CHEN Chong-Qi, LIN Xing-yi, ZHENG Qi, ZHAN Ying-ying. Progress on glycerol steam reforming for hydrogen production[J]. J Mol Catal (China), 2012, 26(1): 89-97.)

    6. [6]

      [6] POMPEO F, SANTORI G F, NICHIO N N. Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts[J]. Catal Today, 2011, 172(1): 183-188.

    7. [7]

      [7] ZHANG B, TANG X, LI Y, XU Y, SHEN W. Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts[J]. Int J Hydrogen Energy, 2007, 32(13): 2367-2373.

    8. [8]

      [8] CHIODO V, FRENI S, GALVAGNO A, MONDELLO N, FRUSTERI F. Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen[J]. Appl Catal A: Gen, 2010, 381(1/2): 1-7.

    9. [9]

      [9] MENEZES A O, RODRIGUES M T, ZIMMARO A, BORGES L E P, FRAGA M A. Production of renewable hydrogen from aqueous-phase reforming of glycerol over Pt catalysts supported on different oxides[J]. Renewable Energy, 2011, 36(2): 595-599.

    10. [10]

      [10] NICHELE V, SIGNORETTO M, MENEGAZZO F, GALLO A, SANTO V D, CRUCIANI G, CERRATO G. Glycerol steam reforming for hydrogen production: Design of Ni supported catalysts[J]. Appl Catal B: Environ, 2012, 111-112: 225-232.

    11. [11]

      [11] SÁNCHEZ E A, D'ANGELO M A, COMELLI R A. Hydrogen production from glycerol on Ni/Al2O3 catalyst[J]. Int J Hydrogen Energy, 2010, 35(11): 5902-5907.

    12. [12]

      [12] CHENG C K, FOO S Y, ADESINA A A. Steam reforming of glycerol over Ni/Al2O3 catalyst[J]. Catal Today, 2011, 178(1): 25-33.

    13. [13]

      [13] WANG C, DOU B, CHEN H, SONG Y, XU Y, DU X, LUO T, TAN C. Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in a fixed-bed reactor[J]. Chem Eng J, 2013, 220: 133-142.

    14. [14]

      [14] BUFFONI I N, POMPEO F, SANTORI G F, NICHIO N N. Nickel catalysts applied in steam reforming of glycerol for hydrogen production[J]. Catal Commun, 2009, 10(13): 1656-1660.

    15. [15]

      [15] IRIONDO A, BARRIO V L, CAMBRA J F, ARIAS P L, GUEMEZ M B, SANCHEZ-SANCHEZ M C, NAVARRO R M, FIERRO J L G. Glycerol steam reforming over Ni catalysts supported on ceria and ceria-promoted alumina[J]. Int J Hydrogen Energy, 2010, 35(20): 11622-11633.

    16. [16]

      [16] ADHIKARI S, FERNANDO S D, HARYANTO A. Hydrogen production from glycerin by steam reforming over nickel catalysts[J]. Renew Energy, 2008, 33(5): 1097-1100.

    17. [17]

      [17] SHAO S, SHI A W, LIU C L, YANG R Z, DONG W S. Hydrogen production from steam reforming of glycerol over Ni/CeZrO catalysts[J]. Fuel Proc Technol, 2014, 125: 1-7.

    18. [18]

      [18] DAVE C D, PANT K K. Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst[J]. Renewable Energy, 2011, 36(11): 3195-3202.

    19. [19]

      [19] CHEN H, DING Y, CONG N T, DOU B, DUPONT V, GHADIRI M, WILLIAMS P T. A comparative study on hydrogen production from steam-glycerol reforming: Thermodynamics and experimental[J]. Renewable Energy, 2011, 36(2): 779-788.

    20. [20]

      [20] ADHIKARI S, FERNANDO S, GWALTNEY S R, TO S D F, BRICKA R M, STEELE P H, HARYANTO A. A thermodynamic analysis of hydrogen production by steam reforming of glycerol[J]. Int J Hydrogen Energy, 2007, 32(14): 2875-2880.

    21. [21]

      [21] CAMPBELL C T, PEDEN C H F. Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309(5735): 713-714.

    22. [22]

      [22] POMPEOF, SANTORIG, NICHION N. Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts[J]. Int J Hydrogen Energy, 2010, 35(17): 8912-8920.

    23. [23]

      [23] IRIONDO A, BARRIO V L, CAMBRA J F, ARIAS P L, GÜEMEZ M B, NAVARRO R M, SÁNCHEZ-SÁNCHEZ M C, FIERRO J L G. Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La[J]. Top Catal, 2008, 49(1/2): 46-58.

  • 加载中
    1. [1]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    2. [2]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    3. [3]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    10. [10]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    11. [11]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    12. [12]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    13. [13]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    16. [16]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    17. [17]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(500)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return