Citation: CHEN Wu-hua, WANG Ye-fei, CHEN Jian. Gelling properties of biodiesel at low temperatures[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(6): 669-676. shu

Gelling properties of biodiesel at low temperatures

  • Corresponding author: CHEN Wu-hua, 
  • Received Date: 25 November 2014
    Available Online: 19 January 2015

    Fund Project: 国家自然科学基金(51206188) (51206188)山东省优秀中青年科学家科研奖励基金(BS2013SW032) (BS2013SW032)长江学者和创新团队发展计划资助(IRT1294)。 (IRT1294)

  • The gelling properties of biodiesels were studied with rheometer in the modes of small amplitude oscillatory shearing. The results show that in addition to the cooling gelling properties, biodiesels also show obvious isothermal gelling properties at low temperatures. The effects of cooling rate and shear stress on the gelling properties of biodiesels were studied. The gel point of biodiesel decreases and the strengths of gel structure at the same temperature during cooling and isothermal gelling process weaken with the increase of cooling rate under quiescent conditions. At the same cooling rate, the gel strength during cooling and isothermal gelling process is much weaker with increasing shearing stress. However, the gel strength of biodiesel has little difference after isothermal gelling process although the shear stress applied during cooling process is different. During cooling the gel strength decreases with the increase of cooling rate when the applied shear stress is smaller; but the gel strength increases with the increase of cooling rate when the applied shear stress is larger. No matter the shear stress' values applied in cooling process, the gel structure is enhanced with the increase of cooling rate during the isothermal gelling process.
  • 加载中
    1. [1]

      [1] 陈秀, 袁银南, 来永斌, 王利平. 生物柴油组成与组分结构对其低温流动性的影响[J]. 石油学报(石油加工), 2009, 25(5): 673-677. (CHEN Xiu, YUAN Yin-nan, LAI Yong-bin, WANG Li-ping. Impact of composition and molecular structure upon the cold flow proprtties for biodiesel[J]. Acta Petrol Sin(Pet Process Sect), 2009, 25(5): 673-677.)

    2. [2]

      [2] 吕涯, 李骏, 欧阳福生. 生物柴油调和对其低温流动性能的改善[J]. 燃料化学学报, 2011, 39(3): 189-193. (LÜ Ya, LI Jun, OUYANG Fu-sheng. Effect of biodiesels blending on their low-temperature fluidity[J]. J Fuel Chem Technol, 2011, 39(3): 189-193.)

    3. [3]

      [3] 梅德清, 谭文兵, 袁银男. 利用热力学相平衡分析生物柴油晶体析出规律[J]. 农业工程学报, 2013, 29(15): 223-228. (MEI De-qing, TAN Wen-bing, YUAN Yin-nan. Crystal precipitation law of biodiesel based on thermodynamic phase equilibrium[J]. Trans Chin Soc Agric Eng, 2013, 29(15): 223-228.)

    4. [4]

      [4] 孙玉秋, 陈波水, 孙玉丽, 方建华. 生物柴油低温凝固机理探讨[J]. 石油炼制与化工, 2009, 40(5): 57-60. (SUN Yu-qiu, CHEN Bo-shui, SUN Yu-li, FANG Jian-hua. A preliminary study of the solidification mechanism of biodiesel at low temperature[J]. Pet Process Petrochem, 2009, 40(5): 57-60.)

    5. [5]

      [5] 秦身钧, 孙玉壮, 李萍, 姚宏伟, 史长林. 均相碱催化大豆油制备生物柴油的比较研究[J]. 中国粮油学报, 2010, 25(1): 60-63. (QIN Shen-jun, SUN Yu-zhuang, LI Ping, YAO Hong-wei, SHI Chang-lin. A comparison of biodiesel preparation from soybean oil by using homogeneous catalysts[J]. J Chin Cereals Oils Assoc, 2010, 25(1): 60-63.)

    6. [6]

      [6] 李传宪. 胶凝含蜡原油的结构特性及其化学改性机理的研究[D]. 济南: 山东大学, 2003. (LI Chuan-xian. Research on the structural characteristics of gelled waxy crude oil and the mechanism of its pour point reduction[D]. Jinan: Shandong University, 2003.)

    7. [7]

      [7] LOPES DA SILVA J A, COUTINHO J A P. Dynamic rheological analysis of the gelation behaviour of waxy crude oils[J]. Rheol Acta, 2004, 43(5): 433-441.

    8. [8]

      [8] COUTINHO J A P, LOPES DA SILVA J A, FERREIRA A. Evidence for the aging of wax deposits in crude oils by Ostwald ripening[J]. Pet Sci Technol, 2003, 21(3/4): 381-391.

    9. [9]

      [9] LIN M Z, LI C X, YANG F, MA Y. Isothermal structure deveoolpment of Qinghai Waxy crude oil after static and dynamic cooling[J]. J Petrol Sci Eng, 2011, 77(3/4): 351-358.

    10. [10]

      [10] 李玉海. 氯碱盐泥综合利用制取七水硫酸镁[D]. 天津: 天津大学, 2001. (LI Yu-hai. Preparation of heptahydrate magnesium sulfate using alkali salt mud[D]. Tianjin: Tianjin University, 2001.)

    11. [11]

      [11] BAKIN A S, ROMANENKO V N, SCHILZ J, NIKITINA G V, IVANOV D I. Sizes of crystallites as a function of cooling rate[J]. Scripta Metal Mater, 1994, 31(9): 1131-1134.

    12. [12]

      [12] 叶铁林. 化工结晶过程原理及应用[M]. 北京: 北京工业大学出版社, 2006, 59. (YE Tie-lin. Chemical crystallization process principle and application [M]. Beijing: Beijing university of technology press, 2006, 59.)

    13. [13]

      [13] VISINTIN R F G, LAPASIN R, VIGNATI E, D’ANTONA P, LOCKHART T P. Rheological behavior and structural interpretation of waxy crude oil gels[J]. Langmuir, 2005, 21(14): 6240-6249.

    14. [14]

      [14] VENKATESAN R, NAGARAJAN N R, PASO K, YI Y B, SASTRY A M, FOGLER H S. The strength of paraffin gels formed under static and flow conditions[J]. Chem Eng Sci, 2005, 60(13): 3587-3598.

    15. [15]

      [15] 林名桢. 非牛顿含蜡原油溶胶与凝胶相互转化过程特性与机理研究[D]. 青岛: 中国石油大学(华东), 2010. (LIN Ming-zhen. Investigation on properties and mechanism of sol-gel transformation for non-newtonian waxy crude oil[D]. Qingdao: China University of Petroleum(East China), 2010.)

    16. [16]

      [16] 张洁. 基于双连续相的乙烯-醋酸乙烯共聚物/聚己内酯共混物多孔材料的制备[D]. 扬州: 扬州大学, 2010. (ZHANG Jie. Preparation of porous materials based on ethylene-vinvy acetate copolymer/Polycaprolactone blends co-continuous structure[D]. Yangzhou: Yangzhou University, 2010.)

    17. [17]

      [17] 蔡业彬, 国明成, 彭玉成, 谢存禧. 泡沫塑料加工过程中的气泡成核理论-剪切能成核理论及其发展[J]. 塑料科技, 2005, 168(4): 37-43. (CAI Ye-bin, GUO Ming-cheng, PENG Yu-cheng, XIE Cun-xi. Research on the bubble nucleation theory during the process of foam plastics-The shear energy theory of bubble nucleation and its development[J]. Plast Sci Technol, 2005, 168(4): 37-43.)

    18. [18]

      [18] 蔡业彬, 国明成, 彭玉成, 谢存禧. 剪切流场中微孔发泡的气泡成核理论研究现状[J]. 中国塑料, 2004, 18(2): 5-11. (CAI Ye-bin, GUO Ming-cheng, PENG Yu-cheng, XIE Cun-xi. Research status quo of theory for cell nucleation of microcellular foam in shear flow field[J]. China Plast, 2004, 18(2): 5-11.)

    19. [19]

      [19] LEE S T. Shear effects on thermoplastic foam nucleation[J]. Polym Eng Sci, 1993, 33(7): 418-422.

  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    6. [6]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    13. [13]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    14. [14]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    15. [15]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    16. [16]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    17. [17]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    18. [18]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

Metrics
  • PDF Downloads(0)
  • Abstract views(391)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return