Citation:
CHANG Zhi-bing, CHU Mo, ZHANG Chao, WANG Wen-juan, QU Yang. Influence of particle size on oil yield from pyrolysis of oil shale[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(6): 663-668.
-
The influence of particle size on oil yield from pyrolysis of Huadian oil shale was investigated. The raw material was crushed and sieved to 6 fractions with different particle size: <0.074, 0.074~0.125, 0.125~0.25, 0.25~0.5, 0.5~1 and 1~3 mm. Then, the fraction of 0.25~0.5, 0.5~1 and 1~3 mm were ground to obtain the corresponding powder samples. A standard method and thermogravimetric analysis were applied to measure and characterize the oil yield and organic matter content in different samples. The results show that both the oil yield (from 11.92% to 6.14%) and organic matter content decrease gradually with decrease in particle size, and a significantly linear relationship is observed between oil yield and organic matter content. The oil yield for powder sample of 0.25~0.5, 0.5~1, and 1~3 mm decreases, while gas yield increases, but the variation is slight and below 1%. Both preferential distribution of organic matter and secondary reaction of shale oil determine the oil yield of fractions with different particle sizes. Furthermore, the selective enrichment of organic matter is the predominant factor.
-
-
-
[1]
[1] 刘招君, 董清水, 叶松青, 朱建伟, 郭巍, 李殿超, 柳蓉, 张海龙, 杜江峰. 中国油页岩资源现状[J]. 吉林大学学报 (地球科学版), 2006, 36(6): 869-876. (LIU Zhao-jun, DONG Qing-shui, YE Song-qing, ZHU Jian-wei, GUO Wei, LI Dian-chao, LIU Rong, ZHANG Hai-long, DU Jiang-feng. The situation of oil shale resources in China[J]. J Jilin Univ (Earth Sci Ed), 2006, 36(6): 869-876.)
-
[2]
[2] AHMAD N, WILLIAMS P T. Influence of particle grain size on the yield and composition of products from the pyrolysis of oil shales[J]. J Anal Appl Pyrolysis, 1998, 46(1): 31-49.
-
[3]
[3] NAZZAL J M. The influence of grain size on the products yield and shale oil composition from pyrolysis of Sultani oil shale[J]. Energy Convers Manage, 2008, 49(11): 3278-3286.
-
[4]
[4] 孙保民, 王恭, 朱明亮, 张立栋, 刘朝青, 张进玺. 不同粒径分布条件下桦甸油页岩颗粒特性实验研究[J].华北电力大学学报 (自然科学版), 2013, 40(1): 98-102. (SUN Bao-min, WANG Gong, ZHU Ming-ling, ZHANG Li-dong, LIU Chao-qing, ZHANG Jin-xi. Experimental research for the oil shale particle characteristic under different size distribution[J]. J North China Electr Power Univ (Nat Sci Ed), 2013, 40(1): 98-102.)
-
[5]
[5] RUBEL A M, DAVIS E. The effect of shale particle size on the products from the bench scale fixed bed pyrolysis of Kentucky Sunbury shale[C]//1985 eastern oil shale symposium. Lexington: Kentucky Energy Cabinet, 1985, 43.
-
[6]
[6] 马海燕, 申云生, 张悦华, 刘井杰, 曹祖宾. 桦甸油页岩低温干馏影响因素研究[J]. 石化技术与应用, 2010, 28(2): 109-112. (MA Hai-yan, SHEN Yun-sheng, ZHANG Yue-hua, LIU Jing-jie, CAO Zu-bin. Research of factors on low-temperature dry distillation of Huadian oil shale[J]. Petrochem Technol Appl, 2010, 28(2): 109-112.)
-
[7]
[7] 孙佰仲, 王擎, 姜庆贤, 柏静儒, 孙键. 油页岩含油率的测定及其影响因素分析[J]. 东北电力大学学报, 2006, 26(1): 13-16. (SUN Bai-zhong, WANG Qing, JIANG Qing-xian, BAI Jing-ru, SUN Jian. Determination of oil yield of Huadian oil shales by Fischer Assay analysis[J]. J Northeast Dianli Univ, 2006, 26(1): 13-16.)
-
[8]
[8] 史文权. 苏尼特油页岩低温干馏影响因素考察[J]. 煤, 2013, (165): 20-21. (SHI Wen-quan. Factor influence of Sunith oil shale low temperature dry distillation[J]. Coal, 2013, (165): 20-21.)
-
[9]
[9] 于海龙, 姜秀民. 桦甸油页岩热解特性的研究[J]. 燃料化学学报, 2001, 29(5): 450-453. (YU Hai-long, JIANG Xiu-min. Study of pyrolysis property of Huadian oil shale[J]. J Fuel Chem Technol, 2001, 29(5): 450-453.)
-
[10]
[10] JEONG G N, CHEOL H I, SOO H C, KI B L. Effect of oil shale retorting temperature on shale oil yield and properties[J]. Fuel, 2012, 95: 131-135.
-
[11]
[11] 马跃, 李术元, 王娟, 方朝合. 水介质条件下油页岩热解机理研究[J]. 燃料化学学报, 2011, 39(12): 881-886. (MA Yue, LI Shu-yuan, WANG Juan, FANG Chao-he. Mechanism of oil shale pyrolysis under high pressure water[J]. J Fuel Chem Technol, 2011, 39(12): 881-886.)
-
[12]
[12] HUTTON A, BHARATI S, ROBL T. Chemical and petrographic classification of Kerogen/Macerals[J]. Energy Fuels, 1994, (8): 1478-1488.
-
[13]
[13] 常松, 初茉, 曹文翰, 王博. 煤直接液化残渣热解气体析出规律研究[J]. 洁净煤技术, 2014, 20(2): 84-86. (CHANG Song, CHU Mo, CAO Wen-han, WANG Bo. Precipitated rule of gas from direct liquefaction residue pyrolysis[J]. Clean Coal Technol, 2014, 20(2): 84-86.)
-
[14]
[14] JABER J O, PROBERT S D. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions[J]. Fuel Process Technol, 2000, 63(1): 57-70.
-
[15]
[15] BHARGAVA S, AWAJA F, SUBASINGHE N D. Characterisation of some Australian oil shale using thermal, X-Ray and IR techniques[J]. Fuel, 2005, 84(6): 707-715.
-
[16]
[16] CARTER S D, TAULBEE D N. Fluidized bed steam retorting of Kentucky oil shale[J]. Fuel Process Technol, 1985, 11(3): 251-272.
-
[17]
[17] DUNG N V, WALL G C, KASTL G. Continuous fluidized bed retorting of Condor and Stuart oil shales in a 150 mm diameter reactor[J]. Fuel, 1987, 66(3): 372-376.
-
[18]
[18] DUNG N V. Pyrolysis of Stuart oil shale in the presence of recycled shale[J]. Fuel, 1990, 69(4): 497-501.
-
[19]
[19] FOOKES C J R, DUFFY G J, UDAJA P, CHENSEE M D. Mechanisms of thermal alteration of shale oils[J]. Fuel, 1990, 69(9): 1142-1144.
-
[20]
[20] UDAJA P, DUFFY G J, CHENSEE M D. Coking reactivities of Australian shale oils[J]. Fuel, 1990, 69(9): 1150-1154.
-
[21]
[21] TAULBEE D N, CARTER S D. Characterization of liquid and gaseous products from the KENTORT II integrated retort/ gasifier: 2. Comparison of gasification and combustion modes of operation[J]. Fuel, 1991, 70(11): 1245-1251.
-
[22]
[22] CARTER S D, CITIROGLU M, GALLACHER J, SNAPE C E, MITCHELL S, LAFFERTY C J. Secondary coking and cracking of shale oil vapours from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil shale in a two-stage reactor[J]. Fuel, 1994, 73(9): 1455-1458.
-
[1]
-
-
-
[1]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[2]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[3]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[4]
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
-
[5]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[6]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[7]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[8]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[9]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[10]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
-
[11]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[12]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[13]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[14]
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
-
[15]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[16]
Aiyi Xin , Jiawei Li , Xinyang Ran , Chuanjiang Fu , Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031
-
[17]
Yinwu Su , Xuanwen Zheng , Jianghui Du , Boda Li , Tao Wang , Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092
-
[18]
Yongzhi LI , Han ZHANG , Gangding WANG , Yanwei SUI , Lei HOU , Yaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307
-
[19]
Shiyang He , Dandan Chu , Zhixin Pang , Yuhang Du , Jiayi Wang , Yuhong Chen , Yumeng Su , Jianhua Qin , Xiangrong Pan , Zhan Zhou , Jingguo Li , Lufang Ma , Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046
-
[20]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(378)
- HTML views(20)