Citation:
GUO Wen-tao, WANG Jing-song, SHE Xue-feng, XUE Qing-guo, GUO Zhan-cheng. Pore structure and high-temperature compressive strength of gasified coke with CO2 and steam[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(6): 654-662.
-
By using a coke gasification reaction device and an online measurement apparatus of high-temperature compressive strength, the variation of pore structures of coke after gasification with CO2 and steam was investigated. In addition, the influences of solution loss rate, temperature and pore structure on the high-temperature compressive strength of coke were also studied. The results show that compared with that in CO2 gasification, the average pore diameter of coke becomes smaller, and the specific surface and the quantity of pore under 100 μm increase in steam gasification. Meanwhile, the global high-temperature compressive strength becomes higher. After reacting with CO2 and steam, the high-temperature compressive strength of coke will decrease with the increasing of solution loss or temperature. When the coke is gasified at 1 200 ℃, its work(WOCu) during deforming process will decrease gradually with solution loss. The work(WOCu) is higher for steam gasified coke than that for CO2 gasified coke. The deformation shows a trend of decrease with solution loss. At the same solution loss, compared with that after CO2 gasification, the damage of pore structure variation to the coke strength after gasification with steam is relatively smaller and the deformation resistance is stronger.
-
Keywords:
- coke,
- solution loss rate,
- pore structure,
- high-temperature,
- compressive strength
-
-
-
[1]
[1] SHEN F L, GUPTA S, LIU Y. Effect of reaction conditions on coke tumbling strength carbon structure and mineralogy[J]. Fuel, 2013, 111(92): 223-228.
-
[2]
[2] HERIBERT B. Coal and coke for blast furnaces[J]. ISIJ Int, 1999, 39(7): 617-624.
-
[3]
[3] UJISAWA Y, NAKANO K, MATSUKURA Y, SUNAHARA K. Subjects for achievement of blast furnace operation with low reducing agent rate[J]. Tetsu to Hagane, 2006, 92(12): 1015-1021.
-
[4]
[4] ARIYAMA T, SATO M. Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works[J]. ISIJ Int, 2006, 46(12): 1736-1444.
-
[5]
[5] KUNDRAT D M, MIWA T, RIST A. Injections in the iron blast furnace a graphics study by means of the rist operating diagram[J]. Metall Mater Trans B, 1991, 22(3): 363-383.
-
[6]
[6] DANLOY G, BERTHELEMOT A, GRANT M. ULCOS-Pilot testing of the low-CO2 blast furnace process at the experimental BF in lulea[J]. Rev Métall, 2009, (1): 1-8.
-
[7]
[7] FINK F. Suspension smelting reduction: Aew method of hot iron production[J]. Steel Times, 1996, 224(11): 398-399.
-
[8]
[8] QIN M S, GAO Z K, WANG G L. Blast furnace operation with full oxygen blast[J]. Iron Steel, 1988, 15(6): 287-292.
-
[9]
[9] KASHIWAYA Y, ISHII K. The kinds of reactions in coke gasification by H2O[J]. Tetsu to Hagane, 1993, 79(12): 1305-1310.
-
[10]
[10] 李家新, 汪涧江, 王平, 卢开成. H2O-CO2混合气体对焦炭劣化反应的影响[J]. 安徽工业大学学报, 2008, 25(3): 233-236. (LI Jia-xin, WANG Jian-ping, WANG Ping, LU Kai-cheng. Influence of H2O-CO2 gas mixture on coke degradation[J]. J Anhui Univ Technol, 2008, 25(3): 233-236.)
-
[11]
[11] TAKATANI K, IWANAGA Y. Rate analysis of gasification of metallurgical coke with CO2 and H2O[J]. Tetsu to Hagane, 1989, 75(4): 594-601.
-
[12]
[12] 李绍锋, 吴诗勇. 高温下煤焦的碳微晶及孔结构的演变行为[J]. 燃料化学学报, 2010, 38(5): 513-517. (LI Shao-feng, WU Shi-yong. Evolvement behavior of carbonm inicrystal and pore structure of coal chars at high temperatures[J]. J Fuel Chem Technol, 2010, 38(5): 513-517.)
-
[13]
[13] 张林仙, 黄戒介, 房倚天, 王洋. 中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J]. 燃料化学学报, 2006, 34(3): 265-269. (ZHANG Lin-xian, HUANG Jie-jie, FANG Yi-tian, WANG Yan. Study on reactivity of Chinese anthracite chars gasification-comparison of reactivity between steam and CO2 gasificaiton[J]. J Fuel Chem Technol, 2006, 34(3): 265-269.)
-
[14]
[14] NORIO H, MOTOTSUGU S, SEIJI N. Failure strength of cokes reacted with CO2[J]. Tetsu to Hagane, 2010, 96(5): 305-312.
-
[15]
[15] SAKAI M, NISHIMURA R, NISHIMURA M. Failure strength of metallurgical coke-An approach from materials mechanics[J]. Tetsu to Hagane, 2006, 92(3): 164-170.
-
[16]
[16] 方觉, 王兴艳, 郭丽, 邵剑华. 焦炭高温抗压强度研究[J]. 钢铁, 2006, 41(5): 20-23. (FANG Jue, WANG Xing-yan, GUO Li, SHAO Jian-hua. Research on high temperature compression strength of coke[J]. Iron and Steel, 2006, 41(5): 20-23.)
-
[17]
[17] YAMAZAKI Y, HAYASHIZAKI H, UEOKA K. The effect of variation of the coke microstructure with addition of iron ore on the tensile strength of ferrous coke[J]. Tetsu to Hagane, 2010, 96(9): 536-544.
-
[18]
[18] YAMAMOTO T, HANAOKA K, SAKAMOTO S. Effect of coke pore structure on coke tensile strength before/after CO2 reaction and surface-breakage strength[J]. Tetsu to Hagane, 2006, 92(3): 206-212.
-
[19]
[19] 付志新, 郭占成. 焦化过程半焦孔隙结构时空变化规律的实验研究-孔隙率, 比表面积, 孔径分布的变化[J]. 燃料化学学报, 2007, 35(7): 273-279. (FU Zhi-xin, GUO Zhan-cheng. Variation of pore structure of semi-coke with temperature and spatial location during pyrolysis-Porosity, specific surface area and pore size distribution[J]. J Fuel Chem Technol, 2007, 35(7): 273-279.)
-
[20]
[20] BARRANCO R, PATRICK J, SNAPE C, THOMPSON A. Impact of low-cost filler material on coke quality[J]. Fuel, 2007, 86(14): 2179-2185.
-
[21]
[21] GUPTA S, DUBIKOVA M, FRENCH D. Effect of CO2 gasification on the transformations of coke minerals at high temperatures[J]. Energy Fuels, 2007, 21(2): 1052-1061.
-
[1]
-
-
-
[1]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
-
[2]
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
-
[3]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[4]
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
-
[5]
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
-
[6]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[7]
Ling Zhang , Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075
-
[8]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
-
[9]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[10]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[11]
Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014
-
[12]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[13]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[14]
Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003
-
[15]
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
-
[16]
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
-
[17]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[18]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[19]
Hongwei Ma , Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035
-
[20]
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(527)
- HTML views(89)