Citation: JIA Zhi-gang, DONG Le, LI Xing, GAO Wen-chao, WEI Wen-long, CHANG Hong-hong, YANG Zhi-feng. Wettability of coal tar pitch surface by aqueous solution of C12-m-C12 cationic Gemini surfactant[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(6): 649-653. shu

Wettability of coal tar pitch surface by aqueous solution of C12-m-C12 cationic Gemini surfactant

  • Corresponding author: CHANG Hong-hong, 
  • Received Date: 16 June 2014
    Available Online: 9 September 2014

    Fund Project: 国家自然科学基金(21206103,21076135) (21206103,21076135)道路结构与材料交通运输行业重点实验室开放基金(KF201403)。 (KF201403)

  • Wettability and adsorptive mechanism of coal tar pitch by aqueous solutions of cationic surfactant (C12-m-C12·2Br-, m=4, 6, 8, 10)were investigated by the sessile drop analysis and electrophoresis. The results indicate that the surface tension decreases with increasing surfactant concentration up to the CMC (critical micelle concentration) of the surfactant solution, which θ and S have the similar trend with surface tension. Within the whole range of concentration, the Zisman theory is in accordance with the wettability on the coal tar pitch when spacer chain length value reaches to 10. Meanwhile, there is a liner dependence between adhesion tension (γlgcosθ) and surface tension (γlg). Zeta potential on the surface of the coal tar pitch increases with the increasing surfactant concentration from negative to positive, and finally levels off. And the concentration of the zero potential is lower than CMC at least an order of magnitude. C12-8-C12 Gemini surfactants can significantly change the wettability on the surface of the coal tar pitch. According to the wetting data and Zeta potential of Gemini surfactant on coal tar pitch, it can be inferred that wetting is a concerted action result of electrostatic interaction and van der waals adsorption. Therefore, wetting process can be generally divided into three phases.
  • 加载中
    1. [1]

      [1] 李朋伟, 杨东杰, 楼宏铭, 邱学青. 利用分散稳定性分析仪研究水煤浆的稳定性[J]. 2008, 36(5): 524-529. (LI Peng-wei, YANG Dong-jie, LOU Hong-ming, QIU Xue-qing. Study on the stability of coal water slurry using dispersion-stability analyzer[J]. J Fuel Chem Technol, 2008, 36(5): 524-529.)

    2. [2]

      [2] QIU X Q, ZHOU M S, YANG D J, LOU H M, OUYANG X P, PANG Y X. Evaluation of sulphonated acetone-formaldehyde(SAF) used in coal water slurries prepared from different coals[J]. Fuel, 2007, 86(3): 1439-1445.

    3. [3]

      [3] XU R F, He Q H, CAI J, PAN Y, SHEN J, HU B X. Effects of chemicals and blending petroleum coke on the properties of low-rank Indonesian coal water mixtures[J]. Fuel Process Technol, 2008, 89(3): 249-253.

    4. [4]

      [4] ZHOU M S, YANG D J, QIU X Q. Influence of dispersant on bound water content in coal-water slurry and its quantitative determination[J]. Energy Convers Manage, 2008, 49(5): 3063-3068.

    5. [5]

      [5] 李兴, 王灿, 常宏宏, 魏文珑, 王志忠. 煤沥青水浆的制备及影响规律的研究[J]. 燃料化学学报, 2011, 39(7): 501-506. (LI Xing, WANG Can, CHANG Hong-hong, WEI Wen-long, WANG Zhi-zhong. Preparation and influence factors of coal pitch water slurry[J]. J Fuel Chem Technol, 2011, 39(7): 501-506.)

    6. [6]

      [6] 魏文珑, 刘灵峰, 李兴, 李彦威, 常宏宏. 煤沥青水浆制备原理及研究进展[J]. 煤炭科学技术, 2012, 40(2): 121-124. (WEI Wen-long, LIU Ling-feng, LI Xing, LI Yan-wei, CHANG Hong-hong. Preparation principle and research progress of coal pitch water slurry[J]. Coal Sci Technol, 2012, 40(2), 121-124.)

    7. [7]

      [7] KOOPAL L K. Wetting of solid surfaces: Fundamentals and charge effects[J]. Adv Colloid Interface Sci, 2012, 179-182: 29-42.

    8. [8]

      [8] AHUJA A, TAYLOR J A, LIFTON V. Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces[J]. Langmuir, 2008, 24(14): 9-14.

    9. [9]

      [9] ATKIN R, CRAIG V S J, WANLESS E J, BIGGS S. The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface[J]. J Colloid Interface Sci, 2003, 266(2): 236-244.

    10. [10]

      [10] ATKIN R. Mechanism of cationic surfactant adsorption at the solid-aqueous interface[J]. Adv Colloid Interface Sci, 2003, 103(3): 219-304.

    11. [11]

      [11] SAKAI K, MATSUHASHI K, HONYA A, OGUCHI T, SAKAI H, ABE M. Adsorption characteristics of monomeric/gemini surfactant mixtures at the silica/aqueous solution interface[J]. Langmuir, 2010, 26(22): 17119-17125.

    12. [12]

      [12] CAO M, SONG X, WANG J, WANG Y. A dsorption of hexyl-alpha, omega-bis(dodecyldimethylammonium bromide) gemini surfactant on silica and its effect on wettability[J]. J Colloid Interface Sci, 2006, 300(2): 519-25.

  • 加载中
    1. [1]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035

    2. [2]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    5. [5]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    6. [6]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    7. [7]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    8. [8]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    11. [11]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    12. [12]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

Metrics
  • PDF Downloads(0)
  • Abstract views(614)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return