Citation: WANG Jian-fei, ZHAO Jian-tao, LI Feng-hai, WANG Zhi-qing, HUANG Jie-jie, FANG Yi-tian. Product characteristics for fast co-pyrolysis of bituminous coal and biomass[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(6): 641-648. shu

Product characteristics for fast co-pyrolysis of bituminous coal and biomass

  • Corresponding author: ZHAO Jian-tao, 
  • Received Date: 27 November 2014
    Available Online: 10 February 2015

    Fund Project: 中国科学院战略性先导科技专项(XDA07050100) (XDA07050100)创新2020项目(Y1SC5A1111) (Y1SC5A1111)青年基金(2013021007-2)。 (2013021007-2)

  • The product yields and gas composition were examined for fast co-pyrolysis of bituminous coal with either hemicelluloses-rich corncob or lignin-rich pine sawdust. The results indicate that the interactions among pyrolysis products cause an obvious difference in the yields and gas composition during the co-pyrolysis processes. As compared with pyrolysis of individual fuels, the co-pyrolysis of corncob can generate more CO2 and H2O due to its high content of hemicelluloses. K in biomass is easy to evaporate and transfers to the surface of coal char. The catalytic effect of K can promote the gasification reactions of coal char with CO2 and H2O to produce activated H and hydrogen-rich components, which can couple with radicals to inhibit polycondensation reactions between macro radicals. As a result, the co-pyrolysis increases the gas and liquid yields and decreases the char yield. For co-pyrolysis of bituminous coal and pine sawdust, Ca in pine sawdust can transfer to the surface of coal char to promote the cracking reactions of tar liquids and generate more CO2, CO and hydrogen-rich radicals. The co-pyrolysis reduces the char and liquid yields and raises gas yield. The gasification and cracking reactions of pyrolysis products (char, liquids and gases) produce more secondary hydrogen-rich components to raise hydrocarbons and CO content in the gaseous products.
  • 加载中
    1. [1]

      [1] 魏立纲, 张丽, 徐绍平. 原料对自由落下床中生物质与煤共热解行为的影响[J]. 燃料化学学报, 2011, 39(10): 728-734. (WEI Li-gang, ZHANG Li, XU Shao-ping. Effects of feedstock on co-pyrolysis of biomass and coal in a free-fall reactor[J]. J Fuel Chem Technol, 2011, 39(10): 728-734.)

    2. [2]

      [2] 魏立纲, 张丽, 徐绍平. 自由落下床中生物质与煤共热解的协同效应对焦油组成的影响. 燃料化学学报[J]. 2012, 40(5): 519-525. (WEI Li-gang, ZHANG Li, XU Shao-ping. Effect of synergism between biomass and coal during co-pyrolysis in a free fall reactor on tar components[J]. J Fuel Chem Technol, 2012, 40(5): 519-525.)

    3. [3]

      [3] ONAY Ö. Fast and catalytic pyrolysis of pistacia khinjuk seed in a well-swept fixed bed reactor[J]. Fuel, 2007, 86(10): 1452-1460.

    4. [4]

      [4] ONAY Ö, BAYRAM E, KOÇKAR Ö. Copyrolysis of seyitömer-lignite and safflower seed: Influence of the blending ratio and pyrolysis temperature on product yields and oil characterization[J]. Energy Fuels, 2007, 21(5): 3049-3056.

    5. [5]

      [5] VUTHALURU H B. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis[J]. Bioresour Technol, 2004, 92(2): 187-195.

    6. [6]

      [6] 王健, 张守玉, 郭熙, 董爱霞, 陈川, 熊绍武, 房倚天. 平朔煤和生物质共热解实验研究[J]. 燃料化学学报, 2013, 41(1): 67-73. (WANG Jian, ZHANG Shou-yu, GUO Xi, DONG Ai-xia, CHEN Chuan, XIONG Shao-wu, FANG Yi-tian. Co-pyrolysis of Ping shuo coal and biomass[J]. J Fuel Chem Technol, 2013, 41(1): 67-73.)

    7. [7]

      [7] DONG K P, SANG D K, SEE H L, JAE G L. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor[J]. Bioresour Technol, 2010, 101: 6151-6156.

    8. [8]

      [8] 王立, 陈雪莉, 赵英杰, 李帅丹, 王辅臣. 稻草与煤固定床共热解特性的研究[J]. 燃料化学学报, 2013, 41(4): 436-442. (WANG Li, CHEN Xue-li, ZHAO Ying-jie, LI Shuai-dan, WANG Fu-chen. Experimnetal study on co-pyrolysis characteristic of straw and coal blends in a fix bed reactor[J]. J Fuel Chem Technol, 2013, 41(4): 436-442.)

    9. [9]

      [9] COLLOT A G, ZHUO Y, DUGWELL D R, KANDIYOTI R. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors[J]. Fuel, 1999, 78(6): 667-679.

    10. [10]

      [10] 王林风, 程远超. 硝酸乙醇法测定纤维素含量[J]. 化学研究, 2011, 22(4): 52-55. (WANG Lin-feng, CHENG Yuan-chao. Determination the content of cellulose by nitric acid-ethanol method[J]. Chem Res, 2011, 22(4): 52-55.)

    11. [11]

      [11] WEI L G, XU S P, ZHANG L, ZHANG H G, LIU C H, ZHU H, LIU S Q. Characteristics of fast pyrolysis of biomass in a free fall reactor[J]. Fuel Process Technol, 2006, 87(10): 863-871.

    12. [12]

      [12] LI S G, XU S P, LIU S Q, YANG C, LU Q H. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas[J]. Fuel Process Technol, 2004, 85(8): 1201-1211.

    13. [13]

      [13] JIANG L, HU S, XIANG J, SU S, SUN L S, XU K, YAO Y. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process[J]. Bioresour Technol, 2012, 116: 278-284.

    14. [14]

      [14] ZHAO B F, ZHANG X D, CHEN L, SUN L Z, SI H Y, CHEN G Y. High quality fuel gas from biomass pyrolysis with calcium oxide[J]. Bioresour Technol, 2014, 156: 78-83.

    15. [15]

      [15] ZHANG L, XU S P, ZHAO W, LIU S Q. Co-pyrolysis of biomass and coal in a free fall reactor[J]. Fuel, 2007, 86(3): 353-359.

    16. [16]

      [16] LI S D, CHEN X L, LIU A B, WANG L, YU G S. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed[J]. Bioresour Technol, 2014, 115: 252-257.

    17. [17]

      [17] LI S D, CHEN X L, WANG L, LIU A B, YU G S. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor[J]. Bioresour Technol, 2013, 148: 24-29.

  • 加载中
    1. [1]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    2. [2]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    3. [3]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    4. [4]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    5. [5]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    6. [6]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    7. [7]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    11. [11]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    12. [12]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    13. [13]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    15. [15]

      Hengwei Wei Liqiu Zhao Jiqiang Geng Xuebo Xu Yingpeng Ma Yuhao Liu Mingzhe Han Huan Jiao Lingling Wei . Research on Safety Management of Hazardous Chemicals and Talent Cultivation in Universities Driven by Production-Education Integration. University Chemistry, 2024, 39(10): 289-298. doi: 10.12461/PKU.DXHX202403022

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Yi-Lin Xie Jian-Ji Zhong Qing-Xiao Tong Jing-Xin Jian . Exploring “Magic Teaching” as a Means to Integrate Organic Chemistry Experiments with the “Industry-University-Research” Model. University Chemistry, 2025, 40(5): 252-260. doi: 10.12461/PKU.DXHX202407024

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(0)
  • Abstract views(330)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return