Citation: YANG Wei-jin, WANG Kun, ZHAO Hai-bo, MA Jin-chen, MEI Dao-feng, ZHENG Chu-guang. Investigation on redox performance of transition metal decorated Fe2O3/Al2O3 oxygen carrier[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(5): 635-640. shu

Investigation on redox performance of transition metal decorated Fe2O3/Al2O3 oxygen carrier

  • Corresponding author: ZHAO Hai-bo, 
  • Received Date: 24 December 2014

    Fund Project: 国家自然科学基金(51390494)。 (51390494)

  • Cu, Co, Mn and Ni decorated Fe2O3/Al2O3 oxygen carriers were prepared by freeze-drying method in this work. Temperature programmed reduction (H2-TPR) and Temperature programmed oxidation (TPO) experiments were conducted in an automatic chemisorption instrument, and the reactivity of transition metal decorated Fe2O3/Al2O3 oxygen carriers with H2 and O2 was evaluated. The results showed that the reactivity for oxygen carrier with H2 was improved after decorated with Cu, Co and Ni. But when decorated with Mn, the reactivity and oxygen transport capacity of oxygen carrier decreased. The Cu-decorated Fe2O3/Al2O3 oxygen carrier demonstrated the best reactivity with H2 and favorable stability. Therefore, it could be a potential oxygen carrier for using in the chemical looping combustion.
  • 加载中
    1. [1]

      [1] 蒋靖坤, 郝吉明, 吴烨, STREETS D G, 段雷, 田贺忠. 中国燃煤汞排放清单的初步建立[J]. 环境科学, 2005, 26(2): 34-39.(JIANG Jing-kun, HAO Ji-ming, WU Ye, STREETS D G, DUAN Lei, TIAN He-zhong. Development of mercury emission inventory from coal combustion in China[J]. Environ Sci, 2005, 26(2): 34-39.)

    2. [2]

      [2] GB13223—2011, 火电厂大气污染物排放标准[S].(GB13223—2011, Emission standard of air pollutants for thermal power plants[S].)

    3. [3]

      [3] SENIOR C L, HELBLE J J, SAROFIM A F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources[J]. Fuel Process Technol, 2000, 65-66: 263-288.

    4. [4]

      [4] PUDASAINEE D, LEE S H, KIM J H, JANG H N, CHO S J, SEO Y C. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD[J]. Fuel, 2012, 93: 312-318.

    5. [5]

      [5] WILCOX J E, RUPP S C, YING D H, LIM A S, NEGREIRA A, KIRCHOFER A, FENG F, LEE K. Mercury adsorption and oxidation in coal combustion and gasification processes[J]. Int J Coal Geol, 2012, 90-91: 4-20.

    6. [6]

      [6] PAVLISH J H, SONDREAL E A, MANN M D, OLSON E S, GALBREATH K C, LAUDAL D L, BENSON S A. Status review of mercury control options for coal-fired power plants[J]. Fuel Process Technol, 2003, 82(2/3): 89-165.

    7. [7]

      [7] PUDASAINEE D, LEE S J, LEE S H, KIM J H, JANG H N, CHO S J, SEO Y C. Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants[J]. Fuel, 2010, 89(4): 804-809.

    8. [8]

      [8] YANG J, YANG Q, SUN J, LIU Q, ZHAO D, GAO W, LIU L. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015, 59: 78-82.

    9. [9]

      [9] LEE W J, BAE G N. Removal of elemental mercury (Hg(O)) by nanosized V2O5/TiO2 catalysts[J]. Environ Sci Technol, 2009, 43(5): 1522-1527.

    10. [10]

      [10] 钟丽萍, 曹晏, 李文英, 潘伟平, 谢克昌. 燃煤电厂污染控制单元对汞释放的控制作用[J]. 燃料化学学报, 2010, 38(6): 641-646.(ZHONG Li-ping, CAO Yan, LI Wen-ying, PAN Wei-ping, XIE Ke-chang. Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants[J]. J Fuel Chem Technol, 2010, 38(6): 641-646.)

    11. [11]

      [11] 李建荣, 何炽, 商雪松, 陈进生, 喻小伟, 姚沅君. SCR脱硝催化剂对烟气中零价汞的氧化效率研究[J]. 燃料化学学报, 2012, 40(2): 241-246.(LI Jian-rong, HE Chi, SHANG Xue-song, CHEN Jin-sheng, YU Xiao-wei, YAO Yuan-jun. Oxidation efficiency of elemental mercury in flue gas by SCR De-NOx catalysts[J]. J Fuel Chem Technol, 2012, 40(2): 241-246.)

    12. [12]

      [12] 殷立宝, 禚玉群, 徐齐胜, 朱振武, 杜雯, 安忠义. 中国燃煤电厂汞排放规律[J]. 中国电机工程学报, 2013, 33(29): 1-10.(YIN Li-bao, ZHUO Yu-qun, XU Qi-sheng, ZHU Zhen-wu, DU Wen, AN Zhong-yi. Mercury emission from coal-fired power plants in China[J]. Proc Chin Soc Electrical Eng, 2013, 33(29): 1-10.)

    13. [13]

      [13] 许月阳, 薛建明, 王宏亮, 李兵, 管一明, 刘珺. 燃煤烟气常规污染物净化设施协同控制汞的研究[J]. 中国电机工程学报, 2014, 34(23): 3924-3931.(XU Yue-yang, XUE Jian-ming, WANG Hong-liang, LI Bing, GUAN Yi-ming, LIU Jun. Research on mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants[J]. Proc Chin Soc Electrical Eng, 2014, 34(23): 3924-3931.)

    14. [14]

      [14] STRAUBE S, HAHN T, KOESER H. Adsorption and oxidation of mercury in tail-end SCR-DeNOx plants-Bench scale investigations and speciation experiments[J]. Appl Catal B: Environ, 2008, 79(3): 286-295.

    15. [15]

      [15] LI H L, WU C Y, LI Y, ZHANG J Y. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B: Environ, 2012, 111: 381-388.

    16. [16]

      [16] JI L, SREEKANTH P M, SMIRNIOTIS P G, THIEL S W, PINTO N G. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas[J]. Energy Fuels, 2008, 22(4): 2299-2306.

    17. [17]

      [17] 王鹏鹰, 苏胜, 向军, 曹蕃, 尤默, 胡松, 孙路石, 张良平. 低温SCR催化剂脱硝脱汞实验研究[J]. 燃烧科学与技术, 2014, 20(5): 423-427.(WANG Peng-ying, SU Sheng, XIANG Jun, CAO Fan, YOU Mo, HU Song, SUN Lu-shi, ZHANG Liang-ping. Experimental study on NO reduction and Hg0 oxidation over low temperature SCR[J]. Catal Combust Sci Technol, 2014, 20(5): 423-427.)

    18. [18]

      [18] LI Y, MURPHY P D, WU C Y, POWERS K W, BONZONGO J C. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environ Sci Technol, 2008, 42(14): 5304-5309.

    19. [19]

      [19] LI H L, WU C Y, LI Y. ZHANG J Y. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas[J]. Chem Eng J, 2011, 169(1-3): 186-93.

    20. [20]

      [20] KAMATA H, UENO S-I, SATO N, NAITO T. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas[J]. Fuel Process Technol, 2009, 90(7/8): 947-951.

    21. [21]

      [21] TAN Z, SU S, QIU J, KONG F, WANG Z, HAO F, XIANG J. Preparation and characterization of Fe2O3-SiO2 composite and its effect on elemental mercury removal[J]. Chem Eng J, 2012, 195-196: 218-225.

    22. [22]

      [22] GALBREATH K C, ZYGARLICKE C J, TIBBETTS J E, SCHULZ R L, DUNHAM G E. Effects of NOx, α-Fe2O3, β-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system[J]. Fuel Process Technol, 2005, 86(4): 429-448.

    23. [23]

      [23] YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technol, 2008, 180(1/2): 222-226.

    24. [24]

      [24] LI H L, WU C Y, LI Y, ZHANG J Y. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environ Sci Technol, 2011, 45(17): 7394-7400.

    25. [25]

      [25] NOLAN M. Molecular adsorption on the Doped (110) ceria surface[J]. J Phys Chem C, 2009, 113(6): 2425-2432.

    26. [26]

      [26] 束韫, 张凡, 王洪昌, 朱金伟. SO2和H2O对CeO2/TiO2/堇青石催化剂选择催化还原NOx性能的影响[J]. 燃料化学学报, 2014, 42(9): 1111-1118.(SHU Yun, ZHANG Fan, WANG Hong-chang, ZHU Jin-wei. Influence of SO2 and H2O on the selective catalytic reduction of NOx over CeO2/TiO2/cordierite catalyst[J]. J Fuel Chem Technol, 2014, 42(9): 1111-1118.)

    27. [27]

      [27] GAO W, LIU Q, WU C Y, LI H, LI Y, YANG J, WU G. Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst[J]. Chem Eng J, 2013, 220: 53-60.

    28. [28]

      [28] CAO Y, CHEN B, WU J, CUI H, SMITH J, CHEN C K, CHU P, PAN W P. Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal[J]. Energy Fuels, 2007, 21(1): 145-156.

    29. [29]

      [29] LEE C W, SRIVASTAVA R K, GHORISHI S B, KARWOWSKI J, HASTINGS T W, HIRSCHI J C. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases[J]. J Air Waste Manage Assoc, 2006, 56(5): 643-649.

    30. [30]

      [30] PUDASAINEE D, LEE S J, LEE S H, KIM J H, JANG H N, CHO S J, SEO Y C. Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants[J]. Fuel, 2010, 89(4): 804-809.

    31. [31]

      [31] PRESTO A A, GRANITE E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environ Sci Technol, 2006, 40(18): 5601-5609.

    32. [32]

      [32] EOM Y, JEON S, NGO T, KIM J, LEE T. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst[J]. Catal Lett, 2008, 121: 219-225.

    33. [33]

      [33] KAMATA H, UENO S I, NAITO T, YUKIMURA A. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res, 2008, 47: 8136-8141.

    34. [34]

      [34] KAMATA H, UENO S I, NAITO T, YUKIMURA A. Mercury oxidation by hydrochloric acid over a VOx/TiO2 catalyst[J]. Catal Commun, 2008, 9(14): 2441-2444.

    35. [35]

      [35] RALLO M, HEIDEL B, BRECHTEL K, MAROTO-VALER M M. Effect of SCR operation variables on mercury speciation[J]. Chem Eng J, 2012, 198-199: 87-94.

  • 加载中
    1. [1]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    2. [2]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    8. [8]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    16. [16]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(0)
  • Abstract views(424)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return