Citation: ZHAO Li, HE Qing-song, LI Lin, LU Qiang, DONG Chang-qing, YANG Yong-ping. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(5): 628-634. shu

Research on the catalytic oxidation of Hg0 by modified SCR catalysts

  • Corresponding author: ZHAO Li, 
  • Received Date: 8 January 2015

    Fund Project: 国家重点基础研究发展规划(973计划, 2015CB251501) (973计划, 2015CB251501) 中央高校基本科研业务费(2014ZD17)。 (2014ZD17)

  • A series of metal oxides were employed to modify the commercial SCR catalyst, and the Ce modified SCR catalyst was selected and then subjected to detailed catalytic oxidation of Hg0 by using the simulated flue gas. The results indicated that the catalytic activity of the catalyst was increased remarkably after the Ce modification, and the highest catalytic oxidation of Hg0 was obtained from the modified SCR catalyst with 9% Ce loading, being 40% higher than that of the non-modified SCR catalyst. The BET and XRD analysis indicated that the surface area of the 1%~9% Ce modified SCR catalyst was no significant change compared with the non-modified SCR catalyst, and the CeO2 was well dispersed on the catalyst surface, without any aggregation. The flue gas condition had great effects on the Hg0 conversion. The catalytic oxidation of Hg0 would be significantly increased by HCl, and also increased as the increasing of the temperature in a certain range. The highest catalytic oxidation efficiency reached 95.11% at the optimal space velocity, temperature and flue gas components. In addition, the CeO2 doping did not affect the denitration efficiency of the SCR catalyst.
  • 加载中
    1. [1]

      [1] ABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review[J]. Fuel, 2003, 82(6): 607-631.

    2. [2]

      [2] EPA. Heavy-duty engine and vehicle standards and highway diesel fuel sulfur control requirements[R]. US Environmental Protection Agency, Air and Radiation, EPA420-F-00-057, 2000.

    3. [3]

      [3] MA X L, VELU S, KIM J H, SONG C S. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications[J]. Appl Catal B: Environ, 2005, 56(1): 137-147.

    4. [4]

      [4] 何爱珍, 刘红光, 王坤, 张玥, 袁莉. 轻质燃料油脱硫技术研究进展[J]. 工业催化, 2010, 18(7): 8-12.(HE Ai-zhen, LIU Hong-guang, WANG Kun, ZHANG Yue, YUAN Li. Studies on desulfurizaton technology of light fuel oil[J]. Ind Catal, 2010, 18(7): 8-12.)

    5. [5]

      [5] 周继红, 罗一斌, 宗保宁. Y 型分子筛复合材料的成孔机理[J]. 石油炼制与化工, 2012, 43(1): 26-31.(ZHOU Ji-hong, LUO Yi-bin, ZONG Bao-ning. Formation mechanism of porous molecular sieve Y composite[J]. Petrol Process Petrochem, 2012, 43(1): 26-31.)

    6. [6]

      [6] TAKAHASHI A, YANG F H, YANG R T. New sorbents for desulfurization by π-complexation: Thiophene/benzene adsorption[J]. Ind Eng Chem Res, 2002, 41(10): 2487-2496.

    7. [7]

      [7] VELU S, MA X L, SONG C S. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents[J]. Ind Eng Chem Res, 2003, 42(21): 5293-5304.

    8. [8]

      [8] ZHANG Z Y, SHI T B, JIA C Z, JI W J, CHEN Y, HE M Y. Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites[J]. Appl Catal B: Environ, 2008, 82(1): 1-10.

    9. [9]

      [9] 王娟, 张海波, 张秋卓, 曾辉, 蔡伟民. NiCeY改性沸石吸附燃料油中二苯并噻吩的研究[J]. 环境工程学报, 2008, 2(11): 1581-1584.(WANG Juan, ZHANG Hai-bo, ZHANG Qiu-zhuo, ZENG Hui, CAI Wei-min. Study on adsorption of dibenzothiophene in fuel using NiCeY zeolite[J]. Chin J Environ Eng, 2008, 2(11): 1581-1584.)

    10. [10]

      [10] SONG H, WAN X, DAI M, ZHANG J J, LI F, SONG H L. Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion-exchanged Y zeolite[J]. Fuel Process Technol, 2013, 116: 52-62.

    11. [11]

      [11] 宋华, 高慧杰, 宋华林, 崔雪涵, 万霞, 苑丹丹. Cu(Ⅰ)-Ce(Ⅳ)-Y吸附剂的制备及其脱硫性能研究[J]. 燃料化学学报, 2014, 42(12): 1485-1492.(SONG Hua, GAO Hui-jie, SONG Hua-lin, CUI Xue-han, WAN Xia, YUAN Dan-dan. Preparation of Cu(Ⅰ)-Ce(Ⅳ)-Y adsorbent and its adsorptive desulfurization performance[J]. J Fuel Chem Technol, 2014, 42(12): 1485-1492.)

    12. [12]

      [12] SONG H, WAN X, SUN X. Preparation of AgY zeolites using microwave irradiation and study on their adsorptive desulphurisation performance[J]. Can J Chem Eng, 2013, 91(5): 915-923.

    13. [13]

      [13] 黎俊波, 刘习文, 曹灿灿, 郭嘉, 潘志权. CuY型分子筛制备及吸附脱硫影响因素研究[J]. 离子交换与吸附, 2012, 28(1): 18-25.(LI Jun-bo, LIU Xi-wen, CAO Can-can, GUO Jia, PAN Zhi-quan. Effect of different factors on adsorption of sulfur-containing compounds over CuY zeolites[J]. Ion Exch Adsorpt, 2012, 28(1): 18-25.)

    14. [14]

      [14] BROWN D R, KEVAN L. Comparative electron spin resonance and optical absorption studies of silver-exchanged sodium Y zeolites: Silver centers formed on dehydration, oxidation, and subsequent. gamma.-irradiation[J]. J Phys Chem, 1986, 90(6): 1129-1133.

    15. [15]

      [15] 石川, 程谟杰, 曲振平, 杨学锋, 包信和. 银在甲烷选择性催化还原NO<em>x反应中的催化行为[J]. 催化学报, 2001, 22(6): 555-558.(SHI Chuan, CHENG Mo-Jie, QU Zhen-Ping, YANG Xue-feng, BAO Xin-he. Behavior of different silver species in the selective reduction of NOx by CH4 over Ag-HZSM-5 catalyst[J]. Chin J Catal, 2001, 22(6): 555-558.)

    16. [16]

      [16] 宋丽娟, 潘明雪, 秦玉才, 鞠秀芳, 段林海, 陈晓陆. NiY 分子筛选择性吸附脱硫性能及作用机理[J]. 高等学校化学学报, 2011, 32(3): 787-792.(SONG Li-juan, PAN Ming-xue, QIN Yu-cai, JU Xiu-fang, DUAN Lin-hai, CHEN Xiao-lu. Selective adsorption desulfurization performance and adsorptive mechanisms of NiY zeolites[J].Chem J Chin U, 2011, 32(3): 787-792.)

    17. [17]

      [17] ROMEO M, BAK K, EL FALLAH J, NORMAND F L, HILAIRE L. XPS study of the reduction of cerium dioxide[J]. Surf Interface Anal, 1993, 20(6): 508-512.

    18. [18]

      [18] SHI Y C, YANG X J, TIAN F P, JIA C Y, CHEN Y Y. Effects of toluene on thiophene adsorption over NaY and Ce(IV) Y zeolites[J]. J Nat Gas Chem, 2012, 21(4): 421-425.

    19. [19]

      [19] WANG H G, SONG L J, JIANG H, XU J, JIN L L, ZHANG X T, SUN Z L. Effects of olefin on adsorptive desulfurization of gasoline over Ce(IV) Y zeolites[J]. Fuel Process Technol, 2009, 90(6): 835-838.

    20. [20]

      [20] HERNÁNDEZ-MALDONADO A J, YANGF H, QI G, YANG R T. Sulfur and nitrogen removal from transportation fuels by π-complexation[J]. J Chin Inst Chem Eng, 2006, 37(1): 9-16.

  • 加载中
    1. [1]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    2. [2]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    7. [7]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    15. [15]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    16. [16]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

Metrics
  • PDF Downloads(0)
  • Abstract views(604)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return