Citation: ZHAO Xing-ling, LÜ Yan-an, LIAO Wei-ping, JIN Ming-shan, SUO Zhang-huai. Hydrogen production from steam reforming of ethylene glycol over supported nickel catalysts[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(5): 581-588. shu

Hydrogen production from steam reforming of ethylene glycol over supported nickel catalysts

  • Corresponding author: SUO Zhang-huai, 
  • Received Date: 22 January 2015

    Fund Project: 国家自然科学基金(21273193) (21273193) 山东省自然科学基金(ZR2011BM024)。 (ZR2011BM024)

  • A series of nickel catalysts were prepared by the impregnation and co-precipitation methods and characterized by X-ray diffraction, nitrogen physisorption, and H2 temperature-programmed reduction. The effects of nickel loading, calcination temperature, reaction temperature, support modification and cobalt oxide addition on the catalytic activity and selectivity to H2 in the steam reforming of ethylene glycol were investigated. The results indicate that the nickel catalyst prepared by co-precipitation has smaller particle size and relatively higher activity in comparison with the catalyst prepared by impregnation. Adding a small amount of cobalt oxide to the Ni/CeO2 catalysts can enhance the catalytic activity; over the Ni-Co bimetallic catalyst, the yield of hydrogen reaches 72.6%. Modifying CeO2 with Al2O3, TiO2 and ZrO2 also has a certain influence on the catalytic activity and the Ni/CeO2-Al2O3 catalyst exhibits the highest activity, with an ethylene glycol conversion of 94% to gaseous products and a hydrogen yield of 67.0%. However, Ni/CeO2-SiO2 shows a very low activity in spite of its large surface area and pore volume.
  • 加载中
    1. [1]

      [1] 蒋剑春. 生物质热化学转化制液体燃料的研究进展[J]. 生物质化学工程, 2007, 41(5): 45-51.(JIANG Jian-chun. Research progress on thermo-chemical conversion of biomass into liquid fuels in China[J]. Biomass Chem Eng, 2007, 41(5): 45-51.)

    2. [2]

      [2] 蒋剑春. 生物质能源应用研究现状与发展前景[J]. 林产化学与工业, 2002, 22(2): 75-80.(JIANG Jian-chun. Research progress and development prospect of biomass energy[J]. Chem Ind For Prod, 2002, 22(2): 75-80.)

    3. [3]

      [3] 郑志锋, 蒋剑春, 戴伟娣, 孙云娟. 生物质能源转化技术与应用[J]. 生物质化学工程, 2007, 41(5): 67-77.(ZHENG Zhi-feng, JIANG Jian-chun, DAI Wei-di, SUN Yun-juan. Conversion technology and utilization of biomass energy[J]. Biomass Chem Eng, 2007, 41(5): 67-77.)

    4. [4]

      [4] 李海滨, 袁振宏, 马骁茜. 现代生物质能利用技术[M] . 北京: 化学工业出版社, 2012, 330-331.(LI Hai-bing, YUAN Zhen-hong, MA Xiao-qian. Utilization technology of modern biomass energy[M]. Beijing: Chemical Industry Press, 2012, 330-331.)

    5. [5]

      [5] 龙向东, 李泽龙, 高广, 夏春谷, 李福伟. 乙酰丙酸催化加氢制备γ -戊内酯的研究进展[J]. 分子催化, 2014, 28(4): 384-392.(LONG Xiang-dong, LI Ze-long, GAO Guang, XIA Chun-gu, LI Fu-wei. Research progress of hydrogenation of levulinic acid into γ-valerolactone[J]. J Mol Catal, 2014, 28(4): 384-392.)

    6. [6]

      [6] ZHAO Y, FU Y, GUO Q X. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass[J]. Bioresour Technol, 2012, 114: 740-744.

    7. [7]

      [7] 张建伟, 樊金龙, 吴卫泽. 乙酰丙酸加氢生成γ-戊内酯的反应动力学[J]. 北京化工大学学报(自然科学版), 2010, 37(5): 25-29.(ZHANG Jian-wei, FAN Jin-long, WU Wei-ze. The reaction kinetic of hydrogenation of levulinic acid into γ-valerolactone[J]. J Beijing Univ Chem Technol (Nat Sci), 2010, 37(5): 25-29.)

    8. [8]

      [8] WILLIAM R H, PALKOVITS R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone[J]. ChemSusChem, 2012, 5(9): 1567-1577.

    9. [9]

      [9] BOND J Q, ALONSO D M, WANG D, WEST R M, DUMESIC J A. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science, 2010, 327(5969): 1110-1114.

    10. [10]

      [10] CHENG Y T, JAE J, SHI J, FAN W, HUBER G W. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angew Chem Int Ed, 2012, 51(6): 1387-1390.

    11. [11]

      [11] SAMI M T, BRAHIM M, PIETER C M, MAGUSIN M, PIDKO E A, HENSEN E J M. Structure and reactivity of Zn-modified ZSM-5 zeolites: The importance of clustered cationic Zn complexes[J]. ACS Catal, 2012, 2(1): 71-83.

    12. [12]

      [12] YU L, HUANG S, ZHANG S, LIU Z, XIN W, XIE S, XU L. Transformation of isobutyl alcohol to aromatics over zeolite-based catalysts[J]. ACS Catal, 2012, 2(6): 1203-1210.

    13. [13]

      [13] 夏海岸, 王秀聪, 徐然然, 吴品, 吴义珠, 杨莉, 左宋林. 分子筛基Brønsted 酸和路易斯酸性位对纤维素热解行为的影响[J]. 林产化学与工业, 2013, 33(6): 29-36.(XIA Hai-an, WANG Xiu-chong, XU Ran-ran, WU Pin, WU Yi-zhu, YANG Li, ZUO Song-lin, Influence of Brønsted and lewis acid sites on pyrolytic behaviors of cellulose over zeolite-based catalysts[J]. Chem Ind For Prod, 2013, 33(6): 29-36.)

    14. [14]

      [14] XIA H, SUN K, FENG Z, LI C. The inhibiting effect of H2O on N2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5[J]. J Phys Chem C, 2011, 115(2): 542-548.

    15. [15]

      [15] XIA H, SUN K, LIU Z, FENG Z, YING P, LI C. The promotional effect of NO on N2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5[J]. J Catal, 2010, 270(1): 103-109.

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    8. [8]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    16. [16]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

    17. [17]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

Metrics
  • PDF Downloads(0)
  • Abstract views(384)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return