Citation: XIA Hai-an, ZHANG Jun, YAN Xiao-pei, XU Si-quan, YANG Li. Catalytic conversion of biomass derivative γ-valerolactone to aromatics over Zn/ZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(5): 575-580. shu

Catalytic conversion of biomass derivative γ-valerolactone to aromatics over Zn/ZSM-5 catalyst

  • Corresponding author: XIA Hai-an, 
  • Received Date: 29 January 2015

    Fund Project: 国家自然科学青年基金(31200445) (31200445) 中国科学院大连化学物理研究所催化基础国家重点实验室开放基金(N-12-09) (N-12-09) 江苏高校优势学科建设工程资助 (PAPD)。 (PAPD)

  • Zn/ZSM-5 zeolite catalysts with different Zn contents were prepared by impregnating method. The influence of reaction temperature, reaction time, catalyst dosage, and the acidic properties of catalysts on the conversion of γ-valerolactone to aromatic compounds was investigated.The results show that the introduction of Zn into H-ZSM-5 channel could effective modify the components of liquid product and influence the yields of gas, liquid, and solid as compared to H-ZSM-5 catalyst and non-catalytic conversion of γ-valerolactone. Zn/ZSM-5 catalyst affords the higher contents of aromatic compound compared to H-ZSM-5 and silica catalysts in the liquid product under identical reaction conditions. Therefore, Zn species of Zn/ZSM-5 can not only effectively improve the conversion of γ-valerolactone, but also enhance the formation of aromatic compounds, suggesting that Zn species play a very key role in the formation of these aromatic compounds.
  • 加载中
    1. [1]

      [1] 蒋剑春. 生物质热化学转化制液体燃料的研究进展[J]. 生物质化学工程, 2007, 41(5): 45-51.(JIANG Jian-chun. Research progress on thermo-chemical conversion of biomass into liquid fuels in China[J]. Biomass Chem Eng, 2007, 41(5): 45-51.)

    2. [2]

      [2] 蒋剑春. 生物质能源应用研究现状与发展前景[J]. 林产化学与工业, 2002, 22(2): 75-80.(JIANG Jian-chun. Research progress and development prospect of biomass energy[J]. Chem Ind For Prod, 2002, 22(2): 75-80.)

    3. [3]

      [3] 郑志锋, 蒋剑春, 戴伟娣, 孙云娟. 生物质能源转化技术与应用[J]. 生物质化学工程, 2007, 41(5): 67-77.(ZHENG Zhi-feng, JIANG Jian-chun, DAI Wei-di, SUN Yun-juan. Conversion technology and utilization of biomass energy[J]. Biomass Chem Eng, 2007, 41(5): 67-77.)

    4. [4]

      [4] 李海滨, 袁振宏, 马骁茜. 现代生物质能利用技术[M] . 北京: 化学工业出版社, 2012, 330-331.(LI Hai-bing, YUAN Zhen-hong, MA Xiao-qian. Utilization technology of modern biomass energy[M]. Beijing: Chemical Industry Press, 2012, 330-331.)

    5. [5]

      [5] 龙向东, 李泽龙, 高广, 夏春谷, 李福伟. 乙酰丙酸催化加氢制备γ -戊内酯的研究进展[J]. 分子催化, 2014, 28(4): 384-392.(LONG Xiang-dong, LI Ze-long, GAO Guang, XIA Chun-gu, LI Fu-wei. Research progress of hydrogenation of levulinic acid into γ-valerolactone[J]. J Mol Catal, 2014, 28(4): 384-392.)

    6. [6]

      [6] ZHAO Y, FU Y, GUO Q X. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass[J]. Bioresour Technol, 2012, 114: 740-744.

    7. [7]

      [7] 张建伟, 樊金龙, 吴卫泽. 乙酰丙酸加氢生成γ-戊内酯的反应动力学[J]. 北京化工大学学报(自然科学版), 2010, 37(5): 25-29.(ZHANG Jian-wei, FAN Jin-long, WU Wei-ze. The reaction kinetic of hydrogenation of levulinic acid into γ-valerolactone[J]. J Beijing Univ Chem Technol (Nat Sci), 2010, 37(5): 25-29.)

    8. [8]

      [8] WILLIAM R H, PALKOVITS R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone[J]. ChemSusChem, 2012, 5(9): 1567-1577.

    9. [9]

      [9] BOND J Q, ALONSO D M, WANG D, WEST R M, DUMESIC J A. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels[J]. Science, 2010, 327(5969): 1110-1114.

    10. [10]

      [10] CHENG Y T, JAE J, SHI J, FAN W, HUBER G W. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts[J]. Angew Chem Int Ed, 2012, 51(6): 1387-1390.

    11. [11]

      [11] SAMI M T, BRAHIM M, PIETER C M, MAGUSIN M, PIDKO E A, HENSEN E J M. Structure and reactivity of Zn-modified ZSM-5 zeolites: The importance of clustered cationic Zn complexes[J]. ACS Catal, 2012, 2(1): 71-83.

    12. [12]

      [12] YU L, HUANG S, ZHANG S, LIU Z, XIN W, XIE S, XU L. Transformation of isobutyl alcohol to aromatics over zeolite-based catalysts[J]. ACS Catal, 2012, 2(6): 1203-1210.

    13. [13]

      [13] 夏海岸, 王秀聪, 徐然然, 吴品, 吴义珠, 杨莉, 左宋林. 分子筛基Brønsted 酸和路易斯酸性位对纤维素热解行为的影响[J]. 林产化学与工业, 2013, 33(6): 29-36.(XIA Hai-an, WANG Xiu-chong, XU Ran-ran, WU Pin, WU Yi-zhu, YANG Li, ZUO Song-lin, Influence of Brønsted and lewis acid sites on pyrolytic behaviors of cellulose over zeolite-based catalysts[J]. Chem Ind For Prod, 2013, 33(6): 29-36.)

    14. [14]

      [14] XIA H, SUN K, FENG Z, LI C. The inhibiting effect of H2O on N2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5[J]. J Phys Chem C, 2011, 115(2): 542-548.

    15. [15]

      [15] XIA H, SUN K, LIU Z, FENG Z, YING P, LI C. The promotional effect of NO on N2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5[J]. J Catal, 2010, 270(1): 103-109.

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    8. [8]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    9. [9]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    10. [10]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    11. [11]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    12. [12]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    13. [13]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    14. [14]

      Chuyuan Lin Hui Lin Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407

    15. [15]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    16. [16]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    17. [17]

      Lin Peng Xincheng Liang Zelong Sun Xingfa Chen Dexin Meng Renshu Huang Qian Liu Huan Wen Shibin Yin . Microenvironment regulation of anode-electrolyte interface enables highly stable Zn anodes. Chinese Journal of Structural Chemistry, 2025, 44(4): 100542-100542. doi: 10.1016/j.cjsc.2025.100542

    18. [18]

      Sumiya Akter Dristy Md Ahasan Habib Shusen Lin Mehedi Hasan Joni Rutuja Mandavkar Young-Uk Chung Md Najibullah Jihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-. doi: 10.1016/j.actphy.2025.100079

    19. [19]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(0)
  • Abstract views(397)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return