Citation: WANG Zhi-cai, SHUI Heng-fu, PAN Chun-xiu, REN Shi-biao, KANG Shi-gang, LEI Zhi-ping. Hydro-liquefaction of Xiaolongtan lignite and structural characterization of its heavy products[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(5): 560-566. shu

Hydro-liquefaction of Xiaolongtan lignite and structural characterization of its heavy products

  • Corresponding author: WANG Zhi-cai, 
  • Received Date: 31 October 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2011CB201300-G) (973计划, 2011CB201300-G) 国家自然科学基金(51174254, U1261208, U1361125, 21176001, 21306001, 21476004) (51174254, U1261208, U1361125, 21176001, 21306001, 21476004) 中国矿业大学教育部重点实验室开发基金(CPEUKF1404) (CPEUKF1404)

  • The hydro-liquefaction properties of Xiaolongtan (XLT) lignite were investigated, and structures of the heavy products, including asphaltene (AS) and preasphaltene (PA) were characterized by elemental analysis, FT-IR and fluorescence spectroscopy. The results indicate that XLT lignite shows high liquefaction reactivity, and its conversion catalyzed by FeS at 415 ℃ is 89.6%. During hydro-liquefaction, the macro-molecule of coal are pyrolyzed and deoxygenized. The aromatic structure units in AS and PA are similar to those in the coal. Hydroxyl and carbonyl in the form of aromatic ketone are main oxygen containing groups in AS and PA. The relative content of aromatic structure of PA, dominant in the archipelago molecular architecture, is obviously higher than that of AS. In THF solvent, PA shows significantly stronger aggregation than AS, especially an intra-molecular aggregation observed in a dilute solution. The AS and PA produced at high liquefaction temperature contain more aromatic structure, and show stronger aggregation.
  • 加载中
    1. [1]

      [1] 沈国娟, 张明旭, 王龙贵. 浅谈褐煤的利用途径[J]. 煤炭加工与综合利用, 2005, (6): 25-27.(SHEN Guo-juan, ZHANG Ming-xu, WANG Long-gui. Utilization way of lignite[J]. Coal Process Compr Util, 2005, (6): 25-27.)

    2. [2]

      [2] 朱晓苏. 中国煤炭直接液化优选煤种的研究[J]. 煤化工, 1997, 25(3): 32-39.(ZHU Xiao-su. Research on Chinese optimum coal types used in direct liquefaction[J]. Coal Chem Ind, 1997, 25(3): 32-39.)

    3. [3]

      [3] SCHWAGER I, LEE W C, YEN T F. Separation and characterization of synthoil asphaltene by gel permeation chromatography and proton unclear magnetic resonance spectrometry[J]. Anal Chem, 1977, 49(14): 2363-2365.

    4. [4]

      [4] KANDA N, ITOH H, YOKOYAMA S, OUCHI K. Mechanism of hydrogenation of coal-derived asphaltene[J]. Fuel, 1978, 57(11): 676-680.

    5. [5]

      [5] OUCHI K, KATOH T, ITOH H. Reaction mechanism for the hydrogenolysis of coal-derived preasphaltene[J]. Fuel, 1981, 60(8): 689-693.

    6. [6]

      [6] 谷小会, 周铭, 史士东. 神华煤直接液化残渣中重质油组分的分子结构[J]. 煤炭学报, 2006, 31(1): 76-80.(GU Xiao-hui, ZHOU Ming, SHI Shi-dong. The molecular structure of heavy oil fraction from the Shenhua coal direct liquefaction reside [J]. J China Coal Soc, 2006, 31(1): 76-80.)

    7. [7]

      [7] 谷小会, 史士东, 周铭. 神华煤直接液化残渣中沥青烯组分的分子结构研究[J]. 煤炭学报, 2006, 31(6): 785-789.(GU Xiao-hui, SHI Shi-dong, ZHOU Ming. Study on the molecular structure of asphaltene fraction from the Shenhua coal direct liquefaction residue[J]. J China Coal Soc, 2006, 31(6): 785-789.)

    8. [8]

      [8] BOCKRATH B C, DONNE C L D, SCHWEIGHARDT F K. Coal-derived asphaltenes: Characterization by acid-base fractionation[J]. Fuel, 1978, 57(1): 4-8.

    9. [9]

      [9] STENBERG V I, BALTISBERGER R J, PATAL K M, RAMAN K, WOOLSEY N F. The role of noncovalent bonding in coal[C] // Coal Science (vol.2). New York: Academic Press, 1993:125-171.

    10. [10]

      [10] YOUNG L S, YAGGI N F, LI N C. Effect of various phenol additives on viscosity of SRC blends[J]. Fuel, 1984, 63(5): 593-598.

    11. [11]

      [11] WARGADALAM V J, NORINAGA K, IION M. Hydrodynamic properties of coal extracts in pyridine[J]. Energ Fuels, 2001, 15(5): 1123-1128.

    12. [12]

      [12] HORTAL A R, HURTADO P, MARTINEZ-HAYA B, MULLINS O C. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments[J]. Energy Fuels, 2007, 21(5): 2863-2869.

    13. [13]

      [13] 水恒福, 周华. 煤的缔合结构研究. I 溶液缔合动力学[J]. 燃料化学学报, 2004, 32(6): 679-683.(SHUI Heng-fu, ZHOU Hua. Study on the associative structure of coal. I Associative kinetics in solution[J]. J Fuel Chem Technol, 2004, 32(6): 679-683.)

    14. [14]

      [14] 卫一龙, 曹祖宾, 赵德智. 石油胶体分散体系理论及其在工业中的应用[J]. 抚顺石油学院学报, 2000, 20(4): 31-35.(WEI Yi-long, CAO Zu-bin, ZHAO De-zhi. The theory of petroleum disperse system and its application in the industry[J]. J Fushun Petrol Inst, 2000, 20(4): 31-35.)

    15. [15]

      [15] WANG Z, SHUI H, ZHANG D, GAO J. A comparison of FeS, FeS+S and solid superacid catalytic properties for coal hydro-liquefaction[J]. Fuel, 2007, 86(5/6): 835-842.

    16. [16]

      [16] 王知彩, 崔雪萍, 水恒福, 王祖山, 雷智平, 康士刚. 煤液化沥青烯的荧光光谱表征及缔合结构研究[J]. 光谱学与光谱分析, 2010, 30(6): 1530-1534.(WANG Zhi-cai, CUI Xue-ping, SHUI Heng-fu, WANG Zu-shan, LEI Zhi-ping, KANG Shi-gang. Fluorescence spectroscopy characterization of asphaltene liquefied from coal and study of its association structure[J]. Spectrosc Spect Anal, 2010, 30(6): 1530-1534.)

    17. [17]

      [17] WANG Z, LI L, SHUI H, WANG Z, CUI X, REN S, LEI Z, KANG S. Study on the aggregation of coal liquefied preasphaltene in organic solvents by UV-vis and fluorescence spectrophotometry[J]. Fuel, 2011, 90(1): 305-311.

    18. [18]

      [18] WANG Z, WEI C, SHUI H, REN S, PAN C, WANG Z, LI H, LEI Z. Synchronous fluorimetric characterization of heavy intermediates of coal direct liquefaction[J]. Fuel, 2012, 98(8): 67-72.

    19. [19]

      [19] 水恒福, 刘健龙, 王知彩, 张德祥. 小龙潭褐煤不同气氛下液化性能的研究[J]. 燃料化学学报, 2009, 37(3): 257-261.(SHUI Heng-fu, LIU Jian-long, WANG Zhi-cai, ZHANG De-xiang. Preliminary study on liquefaction properties of Xiaolongtan lignite under different atmospheres[J]. J Fuel Chem Technol, 2009, 37(3): 257-261.)

    20. [20]

      [20] WINNIK F M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media[J]. Chem Rev, 1993, 93(2): 587-614.

    21. [21]

      [21] GONCALVESA S, CASTILLOA J, FERNANDEZA A, HUNG J. Absorbance and fluorescence spectroscopy on the aggregation behavior of asphaltene-toluene solutions[J]. Fuel, 2004, 83(13): 1823-1828.

    22. [22]

      [22] WANG Z, HU J, SHUI H, REN S, WEI C, PAN C, LEI Z, CUI X. Study on the structure and association of asphaltene derived from liquefaction of lignite by fluorescence spectroscopy[J]. Fuel, 2013, 109: 94-100.

    23. [23]

      [23] SCHEREMATA J M, GRAY M R, DETTMAN H D, MCCAFFREY W C. Quantitative molecular representation and sequential optimization of Athabasca asphaltenes[J]. Energy Fuels, 2004, 18(5): 1377-1384.

    24. [24]

      [24] KARIMI A, QIAN K, OLMSTEAD W N, FREUND H, YUNG C, GRAY M R. Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis[J]. Energy Fuels, 2011, 25(8): 3581-3589.

  • 加载中
    1. [1]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    2. [2]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    5. [5]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    6. [6]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    7. [7]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    8. [8]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    10. [10]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    11. [11]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    14. [14]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    15. [15]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    16. [16]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    19. [19]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    20. [20]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

Metrics
  • PDF Downloads(0)
  • Abstract views(551)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return