Citation: QI Xue-jun, SONG Wen-wu, LIU Liang. Effect of iron on Shengli brown coal char structure and its influence on gasification reactivity[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(5): 554-559. shu

Effect of iron on Shengli brown coal char structure and its influence on gasification reactivity

  • Corresponding author: QI Xue-jun, 
  • Received Date: 25 November 2014

    Fund Project: 四川省教育厅重大培育项目(14CZ0013)。 (14CZ0013)

  • Acid-washing brown coal samples loaded with different content of iron catalyst were pyrolyzed in a fixed bed reactor. The effect of iron on coal char functional group, carbon crystallite structure, surface active site and gasification reactivity were investigated by FT-IR, Raman spectra,TPD and TG. FT-IR results reveal that the numbers of -OH、-CH3、-CH2 active functional groups increase significantly during catalytic pyrolysis. Raman spectra results show that IG/Iall reduces from 0.095 to 0.087 and ID3/Iall increases from 0.090 to 0.097 with the increase of iron loading, respectively. It means that partial large polyaromatic ring structures transform into small polyaromatic ring structures under the catalytic action of iron. TPD experimental results indicate that the numbers of active sites increase with the increase of iron loading. With 3% Fe loading, the numbers of active sites rise with the increase of adsorption temperature until 800 ℃, and then start to decrease. The adsorption quantity of CO2 increases with time at 750 ℃, and reaches saturated adsorption state after 45 min. Coal char-steam isothermal gasification experiment result suggests that the gasification reactivity of coal char has a close relationship with the number of active sites, and the iron catalyst can enhance the char gasification reactivity by increase the number of surface active sites.
  • 加载中
    1. [1]

      [1] 尹立群. 我国褐煤资源及其利用前景[J]. 煤炭科学技术, 2004, 32(8): 12-14.(YIN Li-qun. Liginite resources and utilization outlook in China[J]. Coal Sci Technol, 2004, 32(8): 12-14.)

    2. [2]

      [2] 范冬梅, 朱志平, 那永洁, 张海霞, 吕清刚. 一种褐煤煤焦水蒸气和CO2气化性的对比研究[J]. 煤炭学报, 2013, 38(4): 681-687.(FAN Dong-mei, ZHU Zhi-ping, NA Yong-jie, ZHANG Hai-xia, LÜ Qing-gang. A contrastive study on reactivity of browncoal char gasification with steam and CO2[J]. J China Coal Soc, 2013, 38(4): 681-687.)

    3. [3]

      [3] OHTSUKA Y, ASAMI K. Steam gasification of low-rank coals with a chlorine-free iron catalyst from ferric chloride[J]. Ind Eng Chem Res, 1991, 30(8): 1921-1926.

    4. [4]

      [4] OHME H, SUZUKI T. Mechanisms of CO2gasification of carbon catalyzed with group VIII Metals. 1. Iron-catalyzed CO2 gasification[J]. Energy Fuels, 1996, 10(4): 980-987.

    5. [5]

      [5] POPA T, FAN M, ARGYLE M D, DYAR M D, GAO Y, TANG J, SPEICHER E A, KAMMEN D M. H2 and COx generation from coal gasification catalyzed by a cost-effective iron catalyst[J]. Appl Catal A: Gen, 2013, 464/465(8): 207-217.

    6. [6]

      [6] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12): 1664-1683.

    7. [7]

      [7] CHEN S G, YANG R T. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O[J]. Energy Fuels, 1997, 11(2): 421-427.

    8. [8]

      [8] MOULIJN J A, KAPTEIJN F. Towards a unified theory of reactions of carbon with oxygen-containing molecules[J]. Carbon, 1995, 33(8): 1155-1165.

    9. [9]

      [9] ÁVAREZ T, FUERTES A B, PIS J J, EHRBURGER P. Influence of coal oxidation upon char gasification reactivity[J]. Fuel, 1995, 74(5): 729-735.

    10. [10]

      [10] ASAMI K, OHTSUKA Y. Highly active iron catalysts from ferric chloride for the steam gasification of brown coal[J]. Ind Eng Chem Res, 1993, 32(8): 1631-1636.

    11. [11]

      [11] YAMASHITA H, TOMITA A. Local structures of metals dispersed on coal. 5. Effect of coal, catalyst precursor, and catalyst preparation method on the structure of iron species during heat treatment and steam gasification[J]. Ind Eng Chem Res, 1993, 32(3): 409-415.

    12. [12]

      [12] OHTSUKA Y, ASAMI K. Highly active catalysts from inexpensive raw materials for coal gasification[J]. Catal Today, 1997, 39(1/2): 111-125.

    13. [13]

      [13] FURIMSKY E, SEARS P, SUZUKI T. Iron-catalyzed gasification of char in CO2[J]. Energy Fuels, 1988, 2(5): 634-639.

    14. [14]

      [14] HERMANN G, HVTINGER K J. Mechanismofiron-catalyzed water vapour gasification of carbon[J]. Carbon, 1986, 2(4): 429-435.

    15. [15]

      [15] MOLINA A, MONTOYA A, MONDRAGÓN F. CO2 strong chemisorption as an estimate of coal char gasification reactivity[J]. Fuel, 1999, 78(8): 971-977.

    16. [16]

      [16] 石金明, 向军, 胡松, 孙路石, 苏胜, 徐朝芬, 许凯. 洗煤过程中煤结构的变化[J]. 化工学报, 2010, 61(12): 3220-3227.(SHI Jin-ming, XlANG Jun, HU Song, SUN Lu-shi, SU Sheng, XU Chao-fen, XU Kai. Change of coal structure during washing process[J]. CIESC J, 2010, 61(12): 3220-3227.)

    17. [17]

      [17] IVLEVAN P, MESSERER A, YANG X, NIESSNER R, ULRICH P. Raman microspectroscopic analysis of changes in the chemicalstructure and reactivity of soot in a diesel exhaust aftertreatment model system[J]. Environ Sci Technol, 2007, 41(10): 3702-3707.

    18. [18]

      [18] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20): 14095-14107.

    19. [19]

      [19] SCHWAN J, ULRICH S, BATORI V, EHRHARDT H, SILVA S R P. Raman spectroscopy on amorphous carbon films[J]. J Appl Phys, 1996, 80(1): 440-447.

    20. [20]

      [20] DIPPEL B, JANDER H, HEINTZENBERG J. NIR FT Raman spectroscopic study of flame soot[J]. Phys Chem Chem Phys, 1999, 1(20): 4707-4712.

    21. [21]

      [21] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, PÖSCHL U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742.

    22. [22]

      [22] BEYSSAC O, GOFFÉ B, PETITET J P, FROIGNEUX E, MOREAU M, ROUZAUD J N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy[J]. Spectrochim Acta A, 2003, 59(10): 2267-2276.

    23. [23]

      [23] LI X J, HAYASHIJ I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.

    24. [24]

      [24] LIX J, HAYASHIJ I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10/11): 1509-1517.

    25. [25]

      [25] LI X J, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VIII. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10/11): 1518-1525.

    26. [26]

      [26] 王继生, MCENANEY B. 氧饱和煤焦和二氧化碳气化煤焦的TPD-MS谱分析[J]. 煤炭转化, 1992, 15(4): 63-68.(WANG Ji-sheng, MCENANEY B. Analysis of TPD-MS spectra of carbon oxides on coal char surfaces[J]. Coal Convers, 1992, 15(4): 63-68.)

    27. [27]

      [27] WANG J, MORISHITA K, TAKARADA T. High-temperature interactions between coal char and mixtures of calcium oxide, quartz and kaolinite[J]. Energy Fuels, 2001, 15(5): 1145-1152.

    28. [28]

      [28] FENG B, BHATIA S, BARRYJ C. Structural ordering of coal char during heat treatment and its impact on reactivity[J]. Carbon, 2002, 40(4): 481-496.

  • 加载中
    1. [1]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    8. [8]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    9. [9]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    10. [10]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    11. [11]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    14. [14]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    15. [15]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    18. [18]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(0)
  • Abstract views(761)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return