Citation:
GAO Song-ping, WANG Jian-fei, ZHAO Jian-tao, WANG Zhi-qing, FANG Yi-tian, HUANG Jie-jie. Analysis of CH4 evolution in fast pyrolysis of lignite under H2 atmosphere[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(5): 537-545.
-
The fast hydropyrolysis of Huolinhe lignite were carried out under pressure in a tubular reactor with a transporter for coal samples. The effect of H2 on CH4 evolution and crack of chemical bonds were analyzed. Under pressure fast hydropyrolysis conditions, CH4 yield was higher under H2 atmosphere than that under N2 atmosphere, and increased with increasing temperature and pressure. Compared with N2 atmosphere, the yield of CH4 increased by 72.5% under 50% H2 atmosphere at 900 ℃ and 1.0 MPa. H2 or H· free radical induced the cracks of aromatic rings, side chains, ether linkages and aliphatic chains in the char, which could promote the coal pyrolysis. The increased yield of CH4 was mainly due to the external donor H. Below 700 ℃, the action of H2 with active groups in coal structure affected the pyrolysis of coal; above 700 ℃, hydrogenation of char promoted coal pyrolysis, leading to an increase in CH4 yield.
-
-
-
[1]
[1] 金海华, 朱子彬, 马智华, 张成芳, 倪燕慧. 煤快速热解获得液态烃和气态烃的研究 I气氛影响的考察[J]. 化工学报, 1992, 43(6): 719-725.(JIN Hai-hua, ZHU Zi-bin, MA Zhi-hua, ZHANG Cheng-fang, NI Yan-hui. Flash pyrolysis of brown coal for obtaining liquid and gaseous hydrocarbons I Effect of pyrolysis atmmosheres[J]. J Chem Ind Eng(China)), 1992, 43(6):719-725.)
-
[2]
[2] XU W C, TOMITA A. Effect of coal type on fast pyrolysis of various coals[J]. Fuel, 1987, 66(3): 627-631.
-
[3]
[3] FALLON P T, BHATT B, STEINBERG M. The flash hydropyrolysis of lignite and sub-bituminous coals to both liquid and gaseous hydrocarbon products[J]. Fuel Process Technol, 1980, 3(3/4): 155-168.
-
[4]
[4] 朱学栋, 朱子彬, 唐黎华, 张成芳. 煤的热解研究I气氛和温度对热解的影响[J]. 华东理工大学学报, 1998, 24(1): 37-41.(ZHU Xue-dong, ZHU Zi-shan, TANG Li-hua, ZHANG Cheng-fang. Fundamental study on the pyrolysis of coals: I Effect of atmosphere and temperature on pyrolysis[J]. J East China Univ Sci Technol, 1998, 24(1): 37-41.)
-
[5]
[5] HVTTINGER K J, SCHLEICHER P. Kinetics of hydrogasification of coke catalysed by Fe, Co and Ni[J]. Fuel, 1981, 60(11): 1005-1012.
-
[6]
[6] CYPRES R, FURFARI S. Fixed-bed pyrolysis of coal under hydrogen pressure at low heating[J]. Fuel, 1981, 60(9): 768-778.
-
[7]
[7] COLLIN P J, RALPH J T, MICHAEL X W. 1H n. m. r. study of tars from flash pyrolysis of three Australian coals[J]. Fuel, 1980, 59(7): 479-486.
-
[8]
[8] MAKINO M, TODA Y. Effects of hydrogen pressure on hydrogasification of Taiheiyo (Japan) coal[J]. Fuel, 1981, 60(4): 321-326.
-
[9]
[9] XU W C, MATSUOKA K, AKIHO H, KUMAGAI M, TOMITA A. High pressure hydropyrolysis of coals by using a continuous free-fall reactor[J]. Fuel, 2003, 82(6): 677-685.
-
[10]
[10] ANTHONY D B, HOWARD J B, HOTTEL H C, MEISSNER H P. Rapid devolatilization and hydrogasification of bituminous coal[J]. Fuel, 1976, 55(2): 121-128.
-
[11]
[11] SUUBERG E M, PETERS W A, HOWARD J B. Product compositions in rapid hydropyrolysis of coal[J]. Fuel, 1980, 59(6): 405-412.
-
[12]
[12] MVHLEN H J, HEEK K H V, JVNTGEN H. Influence of pretreatment temperature and pressure on the char reactivity during hydrogasification[J]. Fuel, 1986, 5(4): 591-593.
-
[13]
[13] KARCZ A, PORADA S. Formation of C1-C3 hydrocarbons during pressure pyrolysis and hydrogasification in relation to structural changes in coal[J]. Fuel, 1995, 74(6): 806-809.
-
[14]
[14] 高松平, 赵建涛, 王志清, 王建飞, 房倚天, 黄戒介. CO2对褐煤快速热解行为的影响[J]. 燃料化学学报, 2013, 41(3): 257-264.(GAO Song-ping, ZHAO Jian-tao, WANG Zhi-qing, WANG Jian-fei, FANG Yi-tian, HUANG Jie-jie. The effect of CO2 on the fast pyrolysis behaviors of lignite[J]. J Fuel Chem Technol, 2013, 41(3): 257-264.)
-
[15]
[15] GAO S P, WANG J F, WANG Z Q, ZHAO J T, FANG Y T. Effect of CO on the CH4 evolution during fast pyrolysis of lignite in reductive atmospheres[J]. J Anal Appl Pyrolysis, 2014, 106: 104-111.
-
[16]
[16] YANG H P, CHEN H P, JU F D, YAN R, ZHANG S H. Influence of pressure on coal pyrolysis and char gasification[J]. Energy Fuels, 2007, 21(6): 3165-3170.
-
[17]
[17] LI C Y, ZHAO J T, FANG Y T, WANG Y. Pressurized fast-pyrolysis characteristics of typical chinese coals with different ranks[J]. Energy Fuels, 2009, 23(10): 5099-5015.
-
[18]
[18] 白宗庆, 陈皓侃, 李文, 李保庆. 热重-质谱联用研究焦炭在甲烷气氛下的热行为[J]. 燃料化学学报, 2005, 33 (4): 426-430.(BAI Zong-qing, CHEN Hao-kan, LI Wen, LI Bao-qing. Study on the thermal performance of metallurgical coke under methane by TG-MS[J]. J Fuel Chem Technol, 2005, 33 (4): 426-430.)
-
[19]
[19] SUN Z Q, WU J H, HAGHIGHI M, BROMLY J, NG E, WEE H L, WANG Y, ZHANG D K. Methane cracking over a bituminous coal char[J]. Energy Fuels, 2007, 21(3): 1601-1605.
-
[20]
[20] XU W C, KUMAGAI M. Nitrogen evolution during rapid hydropyrolysis of coal[J]. Fuel, 2002, 81(18): 2325-2334.
-
[21]
[21] NELSON P F, HUTTINGER K J. The effect of hydrogen pressure and aromatic structure on methane yields from the hydropyrolysis of aromatics[J]. Fuel, 1986, 65(4): 354-361.
-
[22]
[22] 石金明, 向军, 张军营, 赵清森, 胡松, 孙路石, 苏胜. 兖州煤热演化过程中表面官能团结构研究[J]. 燃烧科学与技术, 2010, 16 (3): 247-251.(SHI Jin-ming, XIANG Jun, ZHANG Jun-ying, ZHAO Qing-sen, HU Song, SUN Lu-shi, SU Sheng. Surface functional groups structure during Yanzhou coal thermal maturity[J]. J Combust Sci Technol, 2010, 16(3): 247-251.)
-
[23]
[23] SOLOMON P R, CARANGELO R M. FT-i.r. analysis of coal: 2 Aliphatic and aromatic by hydrogen concentration[J]. Fuel, 1988, 67(7): 949-959.
-
[24]
[24] PAINTER P C, OPAPRAKASIT P, SCARONI A. Ionomers and the structure of coal[J]. Energy Fuels, 2000, 14(5): 1115-1118.
-
[25]
[25] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002, 31 (5): 362-363.(FENG Jie, LI Wen-ying, XIE Ke-chang. Research on coal structure using FT-IR[J]. J China Univ Min Technol, 2002, 31 (5): 362-363.)
-
[26]
[26] 张妮. 不同变质程度煤热解生成甲烷特征及反应机制 [D]. 太原: 太原理工大学, 2004.(ZHANG Ni. Reaction mechanisms and characteristics of methane generation during pyrolysis of different rank coals [D]. Taiyuan: Taiyuan University of Technology, 2004.)
-
[1]
-
-
-
[1]
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
-
[2]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[3]
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
-
[4]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[5]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[6]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[7]
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
-
[8]
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
-
[9]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
-
[10]
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
-
[11]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[12]
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
-
[13]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[14]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[15]
Sikai Wu , Xuefei Wang , Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457
-
[16]
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
-
[17]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[18]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[19]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[20]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(505)
- HTML views(40)