Citation: YU Li-wang, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, LIU Xiao-fei, FU Qing. Characterization of coal tar and components identification by Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(5): 530-536. shu

Characterization of coal tar and components identification by Raman spectroscopy

  • Corresponding author: YOU Jing-lin, 
  • Received Date: 1 September 2014

    Fund Project: 国家自然科学基金(50932005, 20973107, 40973046) (50932005, 20973107, 40973046) 上海市科委科技基金(12520709200) (12520709200)

  • Raman spectrum of coal tar was measured by using 355 nm laser at ambient temperature. Simultaneously, Raman spectra of 15 components which each weighted more than 1% in coal tar were also simulated. The calculated results are in good agreement with the experimental ones and the vibrations of Raman spectra of coal tar are assigned. The results indicate that the most components of coal tar are mainly composed of six-membered ring type hydrocarbons with the characteristic bands at 1 660, 1 420 and 1 265 cm-1, which are attributed to the C-C stretching vibrations. When the hydrocarbons connect each other in a resonant mode and chain-like structure, 1 420 cm-1 band is demonstrated significantly. When the hydrocarbons are embedded by the five-member ring type hydrocarbons, the intensity of 1 265 and 1 660 cm-1 band increases significantly. There is little effect on the spectra of the component molecule provided the five-membered ring type hydrocarbons, heteroatom groups and methyl are only connected at the edge of the component molecule.
  • 加载中
    1. [1]

      [1] 王柔, 戴服管. 煤焦油及其深加工[J]. 四川化工, 1995, 3: 31-38.(WANG Rou, DAI Fu-guan. Deep processing of coal tar[J]. Sichuan Chem, 1995, 3: 31-38.)

    2. [2]

      [2] 孙鸣, 冯光, 王汝成, 徐龙, 杨艳红, 马晓迅. 陕北中低温煤焦油的分离与GC-MS分析[J]. 石油化工, 2011, 40(6): 667-672.(SUN Ming, FENG Guang, WANG Ru-cheng, XU Long, YANG Yan-hong, MA Xiao-xun. Separation and GC-MS analysis of Shanbei low temperature coal tar[J]. Petro chem Technol, 2011, 40(6): 667-672.)

    3. [3]

      [3] 曲思建, 关北峰, 王艳芳, 陈贵烽. 我国煤温和气化(热解)焦油性质及其加工利用现状与进展[J]. 煤炭转化, 1998, 21(1): 15-20.(QU Si-jian, GUAN Bei-feng, WANG Yan-fang, CHEN Gui-feng. Properties and processing utilization status and development of mild gasification (pyrolysis) tar from coals in China[J]. Coal Convers, 1998, 21(1): 15-20.)

    4. [4]

      [4] 窦红兵, 畅宾平, 郑水山, 马建亮. 煤焦油加工的国内外现状及发展趋势探讨[J]. 河南冶金, 2007, 14(5): 22-23.(DOU Hong-bing, CHANG Bin-ping, ZHENG Shui-shan, MA Jian-liang. Discuss of actuality and development tendency of coal tar processing home and abroad[J]. Henan Metall, 2007, 14(5): 22-23.)

    5. [5]

      [5] 潘孔洲, 叶煌. 国内外煤焦油加工工艺的比较[J]. 燃料与化工, 2002, 33(5): 249-252.(PAN Kong-zhou, YE Huang. Comparison between coal tar processing processes at home and abroad[J]. Fuel Chem Process, 2002, 33(5): 249-252.)

    6. [6]

      [6] HEROD A A, GEORGE A, ISLAS C A, SUELVES I, KANDIYOTI R. Trace-element partitioning between fractions of coal liquids during column chromatography and solvent separation[J]. Energy Fuels, 2003, 17(4): 862-873.

    7. [7]

      [7] CASAL M D, CANGA C S, DÍEZ M A, ALVAREZ R, BARRIOCANAL C. Low-temperature pyrolysis of coals with different coking pressure characteristics[J]. J Anal Appl Pyrolysis, 2005, 74(1): 96-103.

    8. [8]

      [8] NOVOTNY M, STRAND J W, SMITH S L, WIESLER D, SCHWENDE F J. Compositional studies of coal tar by capillary gas chromatographymass spectrometry[J]. Fuel, 1981, 60(3): 213-220.

    9. [9]

      [9] MCCLENNENA W H, MEUZELAAR H L C, METCALF G S, HILL G R. Characterization of phenols and indanols in coal-derived liquids: Use of Curie-point vaporization gas chromato-graphy/mass spectrometry[J]. Fuel, 1983, 62(12): 1422-1429.

    10. [10]

      [10] KHANA M A, AHMADA I, ISHAQA M, SHAKIRULLAHA M, JANB M T, REHMANB E, BAHADER A. Spectral characterization of liquefied products of Pakistani coal[J]. Fuel Process Technol, 2004, 85(1): 63-74.

    11. [11]

      [11] 徐秀峰, 张蓬洲, 杨保联, 李丽云, 叶朝辉. 用13C-NMR 及 DEPT 技术分析气煤加氢产物中沥青烯段分的组成结构[J]. 燃料化学学报, 1995, 23(4): 410-416.(XU Xiu-feng, ZHANG Peng-zhou, YANG Bao-lian, LI Li-yun, YE Chao-hui. Structural analysis of asphaltenes from hydrogenated PI of gas coal by 13C-NMR spectrum and DEPT technique[J]. J Fuel Chem Technol, 1995, 23(4): 410-416.)

    12. [12]

      [12] MONTES-MORÁNA M A, CRESPOA J L, YOUNG R J, GARCÍA R, MOINELO S R. Mesophase from a coal tar pitch: A Raman spectroscopy study[J]. Fuel Process Technol, 2002, 77: 207-212.

    13. [13]

      [13] KERSHAW J R, SATHE C, HAYASHI J, LI C Z, CHIBA T. Fluorescence spectroscopic analysis of tars from the pyrolysis of a Victorian brown coal in a wire-mesh reactor[J]. Energy Fuels, 2000, 14(2): 476-482.

    14. [14]

      [14] 韩丽娜, 张荣, 毕继诚. 煤焦油及其组分在超临界水中的反应特性研究[J]. 燃料化学学报, 2009, 36(6): 653-659.(HAN Li-na, ZHANG Rong, BI Ji-cheng. Upgrading of coal tar pitch in supercritical water[J]. J Fuel Chem Technol, 2009, 36(6): 653-659.)

    15. [15]

      [15] 马彩霞, 张荣, 毕继诚. 煤焦油在超临界水中的改质研究[J]. 燃料化学学报, 2003, 31(2): 103-110.(MA Cai-xia, ZHANG Rong, BI Ji-cheng. Upgrading of coal tar in supercritical water[J]. J Fuel Chem Technol, 2003, 31(2): 103-110.)

    16. [16]

      [16] 王连勇, 蔡九菊, 李明杰, 孙华成. 煤焦油热裂解机理研究[J]. 东北大学学报 (自然科学版), 2010, 31(4): 550-554.(WANG Lian-yong, CAI Jiu-ju, LI Ming-jie, SUN Hua-cheng. Study on mechanism of coal tar pyrolysis[J]. J Northeast Univ (Nat Sci), 2010, 31(4): 550-554.)

    17. [17]

      [17] SHINOHARA H, YAMAKITA Y, OHNO K. Raman spectra of polycyclic aromatic hydrocarbons. Comparison of calculated Raman intensity distributions with observed spectra for naphthalene, anthracene, pyrene, and perylene[J]. J Mol Struct, 1998, 442(1/3): 221-234.

    18. [18]

      [18] XIN H H, WANG D M, QI X Y, QI G S, DOU G L. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra[J]. Fuel Process Technol, 2014, 118: 287-295.

    19. [19]

      [19] MAPELLI C, CASTIGLIONI C, MERONI E, ZERBI G. Graphite and graphitic compounds:Vibrational spectra from oligomers to real materials[J]. J Mol Struct, 1999, 480-481: 615-620.

    20. [20]

      [20] YOSHIZAWA K, OKAHARA K, SATO T, TANAKA K, YAMABE T. Molecular orbital study of pyrolytic carbons[J]. Carbon, 1994, 32(8): 1517-1522.

    21. [21]

      [21] YOU J L, JIANG G C, HOU H Y, CHEN H, WU Y Q, XU K D. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates[J]. J Raman Spectrosc, 2005, 36(3): 237-249.

    22. [22]

      [22] 刘晓伟, 尤静林, 王媛媛, 王晨阳, 刘钦, 王静, 赵婷. Na3AlF6-Al2O3系熔盐结构的计算模拟与高温拉曼光谱[J]. 中国有色金属学报, 2014, 24(1): 286-292.(LIU Xiao-wei, YOU Jing-lin, WANG Yuan-yuan, WANG Chen-yang, LIU Qin, WANG Jing, ZHAO Ting. Caculations simulation and high temperature Raman spectroscopic on structure of Na3AlF6-Al2O3 molten salt system[J]. Chin J Nonferrous Met, 2014, 24(1): 286-292.)

    23. [23]

      [23] 柳晓飞, 尤静林, 王媛媛, LU Li-ming, 解迎芳, 余立旺, 伏清. 澳大利亚烟煤热解的拉曼光谱研究[J]. 燃料化学学报, 2014, 42(3): 270-276.(LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, LU Li-ming, XIE Ying-fang, YU Li-wang, FU Qing. Raman spectroscopic studies of Australian bituminous coal pyrolysis[J]. J Fuel Chem Technol, 2014, 42(3): 270-276.)

    24. [24]

      [24] 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 化学工业出版社, 2010.(GAO Jin-sheng. The pyrolysis of coal, metallurgical and coal tar processing[M]. Beijing: Chemical Industry Press, 2010.)

    25. [25]

      [25] 陈敏, 燕慧, 杨文智, 王爱青. 煤焦油主要组分测试方法探析[J]. 煤化工, 2005, 32(5): 39-41.(CHEN Min, YAN Hui, YANG Wen-zhi, WANG Ai-qing. Probe and analysis of the testing method for main components in coal tar[J]. Coal Chem Ind, 2005, 32(5): 39-41.)

    26. [26]

      [26] MUKAMUREZI G, 谢云飞, 姚卫蓉, 赵冰. 利用密度泛函理论研究六种多环芳烃的分子结构以及拉曼光谱[J]. 光散射学报, 2012, 24(4): 333-338.(MUKAMUREZI G, XIE Yun-fei, YAO Wei-rong, ZHAO Bing. Density functional theory studies on molecular structure and Raman spectroscopy of polycyclic aromatic hydrocarbons[J]. J Light Scattering, 2012, 24(4): 333-338.)

    27. [27]

      [27] FERRAI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B: Condens Matter Mater Phys, 2000, 61(20): 95-107.

    28. [28]

      [28] SADEZKY A, MUCKENHUBER H, GROTHE H, NIESSNER R, POSCHL U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742.

    29. [29]

      [29] KAWAKAMI M, KARATO T, TAKENAKA T, YOKOYAMA S. Structure analysis of coke, wood charcoal and bamboo charcoal by Raman spectroscopy and their reaction rate with CO2[J]. ISIJ Int, 2005, 45(7): 1027-1034.

  • 加载中
    1. [1]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    4. [4]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    5. [5]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    6. [6]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    9. [9]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    10. [10]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    15. [15]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    16. [16]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    19. [19]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    20. [20]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

Metrics
  • PDF Downloads(0)
  • Abstract views(615)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return