Citation:
ZOU Lu, DENG Chao, GAO Ying, WU Bing. Palladium catalysts supported by polyaniline carbon composite for formic acid electrooxidation[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(4): 507-512.
-
The composite support (PAnC) with conductive polymer polyaniline and activated carbon are prepared. The catalytic performance of the Pd catalyst prepared with PAnC as a support is better than that of the catalyst prepared with activated carbon alone. In addition, the polyaniline carbon support (PAnC-S), which prepared with doping sodium dodecyl sulfate, owns lower charge transfer resistance, more mesoporous between 10~25 nm, larger specific surface area, 94.9 m2/g. PAnC-S and PAnC have uniform particle sizes of about 30 nm. The Pd catalysts prepared with PAnC-S and PAnC support have larger electrochemical surface area, 84.7 and 62.6 m2/g, respectively. Pd/PAnC-S and Pd/PAnC have higher activity and stability for formic acid electrooxidation compared with the Pd/C.
-
Keywords:
- polyaniline,
- formic acid,
- electro-catalysis,
- palladium
-
-
-
[1]
[1] 陆天虹, 唐亚文, 张玲玲, 高颖. 直接甲酸燃料电池的优越性[J]. 电池工业, 2007, 11(6):412-414. (LU Tian-hong, TANG Ya-wen, ZHANG Ling-ling, GAO Ying. Advantages of the direct formic acid fuel cells[J]. Chin Battery Ind, 2007, 11(6):412-414.)
-
[2]
[2] 贾羽洁, 蒋剑春, 孙康, 陆天虹. Pt/Au原子比对活性炭负载Au-Pt直接甲酸燃料电池阴极催化剂性能的影响[J]. 燃料化学学报, 2011, 39(10):792-795. (JIA Yu-jie, JIANG Jian-chun, SUN Kang, LU Tian-hong. Effect of Pd/Au calalyst on its cathodic performance in direct formic acid fuel cell[J]. J Fuel Chem Technol, 2011, 39(10):792-795.)
-
[3]
[3] 刘春艳, 徐斌, 唐亚文, 曹高萍. 大孔炭载Pd催化剂对甲酸氧化的电催化性能[J]. 物理化学学报, 2011, 27(3):604-608. (LIU Chun-yan, XU Bin, TANG Ya-wen, CAO Gao-ping. Electrocatalytic performance of Pd catalyst supported on macropore carbon for oxidation of formic acid[J]. Acta Phys-Chim Sin, 2011, 27(3):604-608.)
-
[4]
[4] 刘佳佳, 邬冰, 高颖. 聚吡咯碳载Pd催化剂的制备及对甲酸的电催化氧化[J]. 化学学报, 2012, 70:1743-147. (LIU Jia-jia, WU Bing, GAO Ying. Preparation of polypyrrole-carbon black supported Pd catalyst for formic acid electrooxidation[J]. Acta Chim Sin, 2012, 70:1743-1747.)
-
[5]
[5] PANDEY R K, LAKDHMINARAYANAN V. Electro-oxidation of formic acid and ethanol on electrodeposited Pd-polyaniline nanofiber films in acid and alkaline medium[J]. J Phys Chem C, 2009, 113(52):21596-21603.
-
[6]
[6] LIAO C, WEI Z D, CHEN S G, LI L. Synergistic effect of polyaniline modified Pd/C catalysts on formic acid oxidation in a weak acid medium(NH4)2SO4[J]. J Phys Chem C, 2009, 113(14):5705-5710.
-
[7]
[7] DHAOUI W, HASIK M, DJUIRADO D, BEMASIK A. Redox behaviour of polyaniline-palladium catalytic system in the presesnce of formic acid[J]. Synth Met, 2010, 160(23):2546-2551.
-
[8]
[8] DONG Q Z, ZHU L Y, WANG H S, GUO C. Polyaniline poly(O-methoxyaniline) composite films as supports of Pt-Ru nanoparticles for formic acid electro-oxidation[J]. Int J Electrochem Sci, 2014, 9(12):8024-8044.
-
[9]
[9] ZHANG Q, LI Y, LI Y. Electropolymerization of grapheme oxide/polyaniline composite for high-performance supercapacitor[J]. Electrochim Acta, 2013, 90:95-100.
-
[10]
[10] CHUNG W, SIN J C, PIN R C. Doping process effect of polyaniline doped with poly(stryrenesulfonic acid) supported platinum for methanol oxidation[J]. J Taiwan Inst Chem Eng, 2013, 44(3):497-504.
-
[11]
[11] MOGHADDAM R, PICKUP P. Formic acid oxidation at spontaneously deposited palladium on polyaniline modified carbon fibre paper[J]. Electrochim Acta, 2011, 56(22):7666-7672.
-
[12]
[12] 孙通, 李晓霞, 郭翔宇, 赵纪金, 马森, 赵楠. 不同酸掺杂聚苯胺的电化学聚合及性能[J]. 化工进展, 2013, 32(8):1870-1876. (SUN Tong, LI Xiao-xia, GUO Xiang-yu, ZHAO Ji-jin, MA Sen, ZHAO Nan. Electrochemical polymerization and properties of polyaniline doped with different acids[J]. Chem Ind Eng Prog, 2013, 32(8):1870-1876.)
-
[13]
[13] 吴丹, 朱超, 强骥鹏, 王杨勇. 聚苯胺的掺杂及其应用[J]. 工程塑料应用, 2006, 34(9):70-73. (WU Dan, ZHU Chao, QIANG Ji-peng, WANG Yang-yong. Doping and application of polyaniline[J]. Eng Plast Appl, 2006, 34(9):70-73.)
-
[14]
[14] HOU J X, LIU Z L, ZHANG P Y. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J]. J Power Sources, 2013, 224:139-144.
-
[15]
[15] 刘艳花, 肖利, 方正. 高氯酸掺杂聚苯胺的合成及其电化学性能[J]. 湖南师范大学自然科学学报, 2011, 34(2):59-64. (LIU Yan-hua, XIAO Li, FANG Zheng. Preparation of perchloric acid-doped plyaniline and its electrochemical performance[J]. J Hunan Norm Univ, Nat Sci Ed, 2011, 34(2):59-64.)
-
[16]
[16] ZHANG H R, WANG X, SHAN Q, WANG Z. Tunable electrode morphology used for high performance supercapacitor polypyrrole nanoaterials as model materials[J]. Electrochim Acta, 2013, 90:535-541.
-
[17]
[17] GUADAGNINI L, TONELLI D, GIORGETTI M. Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection[J]. Electrochim Acta, 2010, 55(17):5036-5039.
-
[18]
[18] 张悦, 汪广进, 潘牧. 基于碳纸电极电化学快速合成聚苯胺纳米纤维[J]. 高等学校化学学报, 2014, 35(10):2234-2238. (ZHANG Yue, WANG Guang-jin, PAN Mu. Fast electropolymerization of polyaniline nanofibers on carbon paper[J]. Chem J Chin Univ, 2014, 35(10):2234-2238.)
-
[19]
[19] GAO Z, YANG W L, WANG J, YAN H J. Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets polyaniline nanofiber composite and its electrochemical performance[J]. Electrochim Acta, 2013, 91:185-194.
-
[1]
-
-
-
[1]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[2]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[3]
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
-
[4]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[5]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[6]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[7]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[8]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[9]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[10]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[11]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[12]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[13]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[14]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[15]
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
-
[16]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[17]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[18]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[19]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[20]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(464)
- HTML views(33)